[npl] / trunk / NationalProblemLibrary / 272 / setStewart14_3 / stefi14_3.pg Repository: Repository Listing bbplugincoursesdistsnplrochestersystemwww

# View of /trunk/NationalProblemLibrary/272/setStewart14_3/stefi14_3.pg

Sat Jun 3 14:39:59 2006 UTC (6 years, 11 months ago) by gage
File size: 1138 byte(s)
 Cleaned problem code using convert-functions.pl


    1 ## DESCRIPTION
2 ##   Find Partial Derivatives
3 ## ENDDESCRIPTION
4
5 ## KEYWORDS('Multivariable', 'Partial Derivative', 'Implicit')
6 ## Tagged by nhamblet
7
8 ## DBsubject('Calculus')
9 ## DBchapter('Partial Derivatives')
10 ## DBsection('Partial Derivatives')
11 ## Date('6/2/2000')
12 ## Author('Joseph Neisendorfer')
13 ## Institution('University of Rochester')
14 ## TitleText1('Calculus')
15 ## EditionText1('')
16 ## AuthorText1('Stewart')
17 ## Section1('14.3')
18 ## Problem1('')
19
20 DOCUMENT();
21
23 "PG.pl",
24 "PGbasicmacros.pl",
25 "PGchoicemacros.pl",
27 "PGauxiliaryFunctions.pl"
28 );
29
30 TEXT(beginproblem());
31 $showPartialCorrectAnswers = 1; 32 33$a = random(-5, 5);
34 $b = random(-5, 5); 35 36$dzdx = - $a; 37$dzdy = - $b; 38 39 BEGIN_TEXT 40$PAR
41 If $$\sin({a}x + {b}y + z) = 0$$, use implicit differentiation to find the first partial derivatives $$42 \frac{\partial z}{\partial x}$$ and $$\frac{\partial z}{\partial y}$$ at the point (0, 0, 0).
43 $PAR 44 A. $$\frac{\partial z}{\partial x}(0, 0, 0) =$$ \{ ans_rule(30) \} 45$PAR
46 B. $$\frac{\partial z}{\partial y}(0, 0, 0) =$$ \{ ans_rule(30) \}
47 END_TEXT
48 ANS(num_cmp($dzdx)); 49 ANS(num_cmp($dzdy));
50
51 ENDDOCUMENT();