[npl] / trunk / NationalProblemLibrary / ASU-topics / setTrigApplications / p6.pg Repository: Repository Listing bbplugincoursesdistsnplrochestersystemwww

# View of /trunk/NationalProblemLibrary/ASU-topics/setTrigApplications/p6.pg

Fri Aug 25 22:55:41 2006 UTC (6 years, 8 months ago) by jj
File size: 1744 byte(s)
```Fixed tags.
```

```    1 ## DESCRIPTION
2 ## Precalculus: Trigonometry
3 ## ENDDESCRIPTION
4
5 ## KEYWORDS('trigonometry')
6 ## Tagged by cmd6a 6/22/06
7
8 ## DBsubject('Trigonometry')
9 ## DBchapter('Trigonometric Functions of Angles')
10 ## DBsection('The Law of Cosines')
11 ## Date('')
12 ## Author('')
13 ## Institution('ASU')
14 ## TitleText1('')
15 ## EditionText1('')
16 ## AuthorText1('')
17 ## Section1('')
18 ## Problem1('')
19
20 DOCUMENT();        # This should be the first executable line in the problem.
21
23 "PG.pl",
24 "PGbasicmacros.pl",
25 "PGchoicemacros.pl",
27 "PGauxiliaryFunctions.pl",
28 "PGasu.pl"
29 );
30
31 TEXT(beginproblem());
32
33 #
34 # Now we do the randomization of variables, and other computations
35 # as needed for this problem.  Sometimes we compute the answers here.
36 #
37
38 \$BC = random(200,300,5);
39
40 \$angB=random(95,120,2);  #angle in degrees
42 \$angC=random(15,30,3);  #angle C in degrees
43 \$C=\$angC*3.14159265/180;  #angle C in radians
44
46 \$angA=180-\$angB-\$angC;
47 \$A=\$angA*3.14159265/180;  #angle A in radians
48 \$ans=sin(\$C)*\$BC/sin(\$A);  #evaluate distance AB
49
50
51
52 BEGIN_TEXT
53 To find the distance AB across a river, a distance \( BC=\$BC \) is laid off
54 on one side of the river. It is found that \( B=\$angB ^\circ \) and
55 \( C=\$angC ^\circ \).  Find AB.
56 \$BR
57 See the picture below. Click on the picture to see it more clearly.
58 \$BR
59 \{ image("river.gif") \}
60 \$BR
61
62
63     \$PAR
64 \$BR AB = \{ans_rule(20)\}
65
66 END_TEXT
67
68 #
69 # Tell WeBWork how to test if answers are right.  These should come in the
70 # same order as the answer blanks above.  You tell WeBWork both the type of