##DESCRIPTION ##KEYWORDS('logarithms,exponentials','exponential growth,decay') ##TYPE('word problem') ##ENDDESCRIPTION DOCUMENT(); # This should be the first executable line in the problem. loadMacros( "PG.pl", "PGbasicmacros.pl", "PGchoicemacros.pl", "PGanswermacros.pl", "PGauxiliaryFunctions.pl" ); TEXT(beginproblem()); \$showPartialCorrectAnswers = 1; \$e = random(2,9,1); \$a1 = random(1,9,1); \$ag = random(0,1,1); if (\$ag == 0) { \$a2 = 'downward'; \$ans_a = "\$e^x - \$a1"; } if (\$ag == 1) { \$a2 = 'upward'; \$ans_a = "\$e^x + \$a1"; } \$b1 = random(1,9,1); \$bg = random(0,1,1); if (\$bg == 0) { \$b2 = 'right'; \$ans_b = "\$e^(x - \$b1)"; } if (\$bg == 1) { \$b2 = 'left'; \$ans_b = "\$e^(x + \$b1)"; } \$cg = random(0,2,1); if (\$cg == 0) { \$c1 = 'x-axis'; \$ans_c = "-\$e^x"; } if (\$cg == 1) { \$c1 = 'y-axis'; \$ans_c = "\$e^(-x)"; } if (\$cg == 2) { \$c1 = 'x-axis and the y-axis'; \$ans_c = "-\$e^(-x)"; } #\$d1 = non_zero_random(-4,4,1); #\$temp = 2 * \$d1; #\$dg = random(0,1,1); #if (\$dg == 0) { # \$d2 = 'x'; # \$ans_d = "\$e**(\$temp-x)"; # } #if (\$dg == 1) { # \$d2 = 'y'; # \$ans_d = "\$temp-\$e**x"; # } TEXT(EV2(<