[npl] / trunk / NationalProblemLibrary / Rochester / setAlgebra28ExpFunctions / ur_le_2_13.pg Repository: Repository Listing bbplugincoursesdistsnplrochestersystemwww

# View of /trunk/NationalProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_2_13.pg

Tue Apr 11 16:55:13 2006 UTC (7 years, 2 months ago) by jjholt
File size: 2054 byte(s)
```Added tags.  --JH
```

```    1 ## DESCRIPTION
2 ## Algebra: Exponential and Logarithmic Functions
3 ## ENDDESCRIPTION
4
5 ## KEYWORDS ('exponential')
6 ## Tagged by cmd6a 4/4/06
7
8 ## DBsubject('Algebra')
9 ## DBchapter('Exponential and Logarithmic Functions')
10 ## DBsection('Exponential Functions')
11 ## Date('')
12 ## Author('')
13 ## Institution('Rochester')
14 ## TitleText1('')
15 ## EditionText1('')
16 ## AuthorText1('')
17 ## Section1('')
18 ## Problem1('')
19
20 DOCUMENT();        # This should be the first executable line in the problem.
21
23 "PG.pl",
24 "PGbasicmacros.pl",
25 "PGchoicemacros.pl",
27 "PGauxiliaryFunctions.pl"
28 );
29
30 TEXT(beginproblem());
32
33 \$e = random(2,9,1);
34
35 \$a1 = random(1,9,1);
36 \$ag = random(0,1,1);
37 if (\$ag == 0) {
38   \$a2 = 'downward';
39   \$ans_a = "\$e^x - \$a1";
40   }
41 if (\$ag == 1) {
42   \$a2 = 'upward';
43   \$ans_a = "\$e^x + \$a1";
44   }
45
46 \$b1 = random(1,9,1);
47 \$bg = random(0,1,1);
48 if (\$bg == 0) {
49   \$b2 = 'right';
50   \$ans_b = "\$e^(x - \$b1)";
51   }
52 if (\$bg == 1) {
53   \$b2 = 'left';
54   \$ans_b = "\$e^(x + \$b1)";
55   }
56
57 \$cg = random(0,2,1);
58 if (\$cg == 0) {
59   \$c1 = 'x-axis';
60   \$ans_c = "-\$e^x";
61   }
62 if (\$cg == 1) {
63   \$c1 = 'y-axis';
64   \$ans_c = "\$e^(-x)";
65   }
66 if (\$cg == 2) {
67   \$c1 = 'x-axis and the y-axis';
68   \$ans_c = "-\$e^(-x)";
69   }
70
71 ##\$d1 = non_zero_random(-4,4,1);
72 ##\$temp = 2 * \$d1;
73 ##\$dg = random(0,1,1);
74 ##if (\$dg == 0) {
75 ##  \$d2 = 'x';
76 ##  \$ans_d = "\$e^(\$temp-x)";
77 ##  }
78 ##if (\$dg == 1) {
79 ##  \$d2 = 'y';
80 ##  \$ans_d = "\$temp-\$e^x";
81 ##  }
82
83 TEXT(EV2(<<EOT));
84 Starting with the graph of \( f(x) = \$e^{x} \), write the equation of the graph that results from
85 \$BR \$BR (a) shifting \( f(x) \) \$a1 units \$a2.  \( y = \) \{ans_rule(20) \}
86 \$BR \$BR (b) shifting \( f(x) \) \$b1 units to the \$b2.  \( y = \) \{ans_rule(20) \}
87 \$BR \$BR (c) reflecting \( f(x) \) about the \$c1.  \( y = \) \{ans_rule(20) \}
88 EOT
89 ##\$PAR (d) reflecting \( f(x) \) about the line \$d2 = \$d1.  \( y = \) \{ans_rule(20) \}
90
91
92
93 ANS(fun_cmp(\$ans_a));
94 ANS(fun_cmp(\$ans_b));
95 ANS(fun_cmp(\$ans_c));
96 ##ANS(fun_cmp(\$ans_d));
97
98 ENDDOCUMENT();        # This should be the last executable line in the problem.
99
```