[npl] / trunk / NationalProblemLibrary / WHFreeman / Rogawski_Calculus_Early_Transcendentals_Second_Edition / 10_Infinite_Series / 10.1_Sequences / 10.1.3.pg Repository: Repository Listing bbplugincoursesdistsnplrochestersystemwww

# View of /trunk/NationalProblemLibrary/WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition/10_Infinite_Series/10.1_Sequences/10.1.3.pg

Tue Nov 8 15:17:41 2011 UTC (2 years, 3 months ago) by aubreyja
File size: 1734 byte(s)
Rogawski problems contributed by publisher WHFreeman. These are a subset of the problems available to instructors who use the Rogawski textbook. The remainder can be obtained from the publisher.

1 ## DBsubject('Calculus')
2 ## DBchapter('Limits and Derivatives')
3 ## DBsection('Definition of the Derivative')
4 ## KEYWORDS('calculus', 'derivatives', 'slope')
5 ## TitleText1('Calculus: Early Transcendentals')
6 ## EditionText1('2')
7 ## AuthorText1('Rogawski')
8 ## Section1('10.1')
9 ## Problem1('3')
10 ## Author('Keith Thompson')
11 ## Institution('W.H.Freeman')
12
13 DOCUMENT();
19
20 #$showPartialCorrectAnswers=1; 21$base=Real(random(2,4,1));
22 $a = Real(random(2,9,1)); 23 24 Context()->variables->add(n=>'Real'); 25$fn = Formula("$a *$base^n/n!"); #added LAD
26
27 $c1 =$fn->eval(n=>1);
28 $c2 =$fn->eval(n=>2);
29 $c3 =$fn->eval(n=>3);
30 $c4 =$fn->eval(n=>4);
31 Context()->flags->set(reduceConstants=>0);
32 $c1sol =$fn->substitute(n=>1);
33 $c2sol =$fn->substitute(n=>2);
34 $c3sol =$fn->substitute(n=>3);
35 $c4sol =$fn->substitute(n=>4);
36
37 Context()->texStrings;
38 BEGIN_TEXT
39 \{ beginproblem() \}
40 \{ textbook_ref_exact("Rogawski ET 2e", "10.1","3") \}
41 $PAR 42 Calculate the first four terms of the following sequence, starting with $$n=1$$. 43 $c_n=fn$ 44$BR $$c_1$$ =  \{ans_rule()\}
45 $BR $$c_2$$ = \{ans_rule()\} 46$BR $$c_3$$ =  \{ans_rule()\}
47 $BR $$c_4$$ = \{ans_rule()\} 48 END_TEXT 49 50 Context()->normalStrings; 51 52 ANS($c1->cmp);
53 ANS($c2->cmp); 54 ANS($c3->cmp);
55 ANS($c4->cmp); 56 Context()->texStrings; 57 SOLUTION(EV3(<<'END_SOLUTION')); 58$PAR
59 \$SOL
60 Setting $$n=1,2,3,4$$ in the formula for $$c_n$$ gives
61 $c_1=c1sol = c1,\qquad c_2=c2sol=c2$
62 $c_3=c3sol \approx c3, \qquad c_4=c4sol \approx c4$.
63 END_SOLUTION
64
65 ENDDOCUMENT();