[npl] / trunk / NationalProblemLibrary / WHFreeman / Rogawski_Calculus_Early_Transcendentals_Second_Edition / 10_Infinite_Series / 10.2_Summing_an_Infinite_Series / 10.2.3.pg Repository: Repository Listing bbplugincoursesdistsnplrochestersystemwww

# View of /trunk/NationalProblemLibrary/WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition/10_Infinite_Series/10.2_Summing_an_Infinite_Series/10.2.3.pg

Tue Nov 8 15:17:41 2011 UTC (2 years, 5 months ago) by aubreyja
File size: 1572 byte(s)
Rogawski problems contributed by publisher WHFreeman. These are a subset of the problems available to instructors who use the Rogawski textbook. The remainder can be obtained from the publisher.

    1 ## DBsubject('Calculus')
2 ## DBchapter('Limits and Derivatives')
3 ## DBsection('Definition of the Derivative')
4 ## KEYWORDS('calculus', 'derivatives', 'slope')
5 ## TitleText1('Calculus: Early Transcendentals')
6 ## EditionText1('2')
7 ## AuthorText1('Rogawski')
8 ## Section1('10.2')
9 ## Problem1('3')
10 ## Author('Keith Thompson')
11 ## Institution('W.H.Freeman')
12
13 DOCUMENT();
19
20 #$showPartialCorrectAnswers=1; 21 #add variation, LAD 22$c = Real(random(2,9,1));
23
24 $ans1=$c*(5/4);
25 $ans2=$c*205/144;
26 $ans3=$c*5369/3600;
27 Context()->texStrings;
28 BEGIN_TEXT
29 \{ beginproblem() \}
30 \{ textbook_ref_exact("Rogawski ET 2e", "10.2","3") \}
31 $PAR 32 33 Compute the partial sums $$S_2,S_4$$, and $$S_6$$. 34 $c+\frac{c}{2^2}+\frac{c}{3^2}+\frac{c}{4^2}+\cdots$ 35 36 37$PAR $$S_2$$ =  \{ans_rule()\}
38 $PAR $$S_4$$ = \{ans_rule()\} 39$PAR $$S_6$$ =  \{ans_rule()\}
40 END_TEXT
41
42 Context()->normalStrings;
43
44 ANS(Real($ans1)->cmp); 45 ANS(Real($ans2)->cmp);
46 ANS(Real($ans3)->cmp); 47 48 Context()->texStrings; 49 SOLUTION(EV3(<<'END_SOLUTION')); 50$PAR
51 $SOL 52 $$S_2=c+\frac{c}{2^2}=c\left( 1+\frac{1}{4}\right)=c\left(\frac{5}{4}\right)$$; 53$PAR
54 $$S_4=c+\frac{c}{2^2}+\frac{c}{3^2}+\frac{c}{4^2}=c\left(\frac{205}{144}\right)$$;
55 \$PAR
56 $$S_6=c+\frac{c}{2^2}+\frac{c}{3^2}+\frac{c}{4^2}+\frac{c}{5^2}+\frac{c}{6^2}=c\left(\frac{5369}{3600}\right)$$.
57
58 END_SOLUTION
59
60 ENDDOCUMENT();


 aubreyja at gmail dot com ViewVC Help Powered by ViewVC 1.0.9