[system] / branches / rel-2-4-patches / webwork2 / courses.dist / modelCourse / templates / setDemo / nsc2s10p2.pg.bak Repository: Repository Listing bbplugincoursesdistsnplrochestersystemwww

# View of /branches/rel-2-4-patches/webwork2/courses.dist/modelCourse/templates/setDemo/nsc2s10p2.pg.bak

Wed Jun 25 11:55:32 2008 UTC (4 years, 10 months ago) by gage
File size: 4827 byte(s)
```Adding the contents of modelCourse templates to rel-2-4-5
```

```    1 ##################################################################
2 ##########Date:: 9-1-101, 19:17:23################
3
4
5
6 #DESCRIPTION
7 # Identify the graphs of the function and the derivative
8 #ENDDESCRIPTION
9
10 #KEYWORDS('derivatives', 'graphs')
11 DOCUMENT();        # This should be the first executable line in the problem.
12
14   "PGbasicmacros.pl",
15   "PGchoicemacros.pl",
17   "PGauxiliaryFunctions.pl",
18   "PGgraphmacros.pl"
19 );
20
21 TEXT(beginproblem());
23
24 \$a=random(0, 6.3, .1);
25 \$b=random(1.1, 1.5, .1);
26
27 \$dom = 4;
28 @slice = NchooseK(3,3);
29
30 @colors = ("blue", "red", "green");
31 @sc = @colors[@slice];  #scrambled colors
32 @sa = ('A','B','C')[@slice];
33
34
35 \$f = "sin(\$a+\$b*cos(x)) for x in <-\$dom,\$dom> using color:\$sc[0] and weight:2";
36 \$fp = "cos(\$a+\$b*cos(x))*(-\$b)*sin(x)   for x in <-\$dom,\$dom> using color=\$sc[1] and weight:2";
37 \$fpp = " -sin(\$a+\$b*cos(x))*\$b*\$b*sin(x)*sin(x) + cos(\$a+\$b*cos(x))*(-\$b)*cos(x) for x in <-\$dom,\$dom> using color=\$sc[2] and weight=2";
38
39 \$graph = init_graph(-4,-4,4,4,'axes'=>[0,0],'grid'=>[8,8]);
40
41 (\$fRef,\$fpRef,\$fppRef) = plot_functions( \$graph,
42                \$f,\$fp,\$fpp
43                            );
44
45 # create labels
46
47 \$label_point=-0.75;
48 \$label_f = new Label ( \$label_point,&{\$fRef->rule}(\$label_point),\$sa[0],"\$sc[0]",'left')        ;
49         # NOTE: \$fRef->rule is a reference to the subroutine which calculates the
50         # function.  It was defined in the output of plot_functions. It is used here
51         # to calculate the y value of the label corresponding to the function,
52         # and below to find the y values for the labels corresponding to the
53         # first and second derivatives.
54
55 \$label_fp = new Label ( \$label_point,&{\$fpRef->rule}(\$label_point),\$sa[1],"\$sc[1]",'left')      ;
56 \$label_fpp = new Label ( \$label_point,&{\$fppRef->rule}(\$label_point),\$sa[2],"\$sc[2]",'left');
57
58 # insert the labels into the graph
59
60 \$graph->lb(\$label_f,\$label_fp,\$label_fpp);
61
62 BEGIN_TEXT
63 \{ image(insertGraph(\$graph))\}\$BR
64 Identify the graphs A (blue), B( red) and C (green) as the graphs of a function and its
65 derivatives:\$PAR
66 \{ans_rule(4)\} is the graph of the function \$PAR
67 \{ans_rule(4)\} is the graph of the function's first derivative \$PAR
68 \{ans_rule(4)\} is the graph of the function's second derivative \$PAR
69 END_TEXT
70 ANS(std_str_cmp_list( @sa ) );
71
72 ENDDOCUMENT();        # This should be the last executable line in the problem.
73 ##################################################################
74 ##########Date:: 9-1-101, 19:18:0################
75
76
77 #DESCRIPTION
78 # Identify the graphs of the function and the derivative
79 #ENDDESCRIPTION
80
81 #KEYWORDS('derivatives', 'graphs')
82 DOCUMENT();        # This should be the first executable line in the problem.
83
85   "PGbasicmacros.pl",
86   "PGchoicemacros.pl",
88   "PGauxiliaryFunctions.pl",
89   "PGgraphmacros.pl"
90 );
91
92 TEXT(beginproblem());
94
95 \$a=random(0, 6.3, .1);
96 \$b=random(1.1, 1.5, .1);
97
98 \$dom = 4;
99 @slice = NchooseK(3,3);
100
101 @colors = ("blue", "red", "orange");
102 @sc = @colors[@slice];  #scrambled colors
103 @sa = ('A','B','C')[@slice];
104
105
106 \$f = "sin(\$a+\$b*cos(x)) for x in <-\$dom,\$dom> using color:\$sc[0] and weight:2";
107 \$fp = "cos(\$a+\$b*cos(x))*(-\$b)*sin(x)   for x in <-\$dom,\$dom> using color=\$sc[1] and weight:2";
108 \$fpp = " -sin(\$a+\$b*cos(x))*\$b*\$b*sin(x)*sin(x) + cos(\$a+\$b*cos(x))*(-\$b)*cos(x) for x in <-\$dom,\$dom> using color=\$sc[2] and weight=2";
109
110 \$graph = init_graph(-4,-4,4,4,'axes'=>[0,0],'grid'=>[8,8]);
111
112 (\$fRef,\$fpRef,\$fppRef) = plot_functions( \$graph,
113                \$f,\$fp,\$fpp
114                            );
115
116 # create labels
117
118 \$label_point=-0.75;
119 \$label_f = new Label ( \$label_point,&{\$fRef->rule}(\$label_point),\$sa[0],"\$sc[0]",'left')        ;
120         # NOTE: \$fRef->rule is a reference to the subroutine which calculates the
121         # function.  It was defined in the output of plot_functions. It is used here
122         # to calculate the y value of the label corresponding to the function,
123         # and below to find the y values for the labels corresponding to the
124         # first and second derivatives.
125
126 \$label_fp = new Label ( \$label_point,&{\$fpRef->rule}(\$label_point),\$sa[1],"\$sc[1]",'left')      ;
127 \$label_fpp = new Label ( \$label_point,&{\$fppRef->rule}(\$label_point),\$sa[2],"\$sc[2]",'left');
128
129 # insert the labels into the graph
130
131 \$graph->lb(\$label_f,\$label_fp,\$label_fpp);
132
133 BEGIN_TEXT
134 \{ image(insertGraph(\$graph))\}\$BR
135 Identify the graphs A (blue), B( red) and C (green) as the graphs of a function and its
136 derivatives:\$PAR
137 \{ans_rule(4)\} is the graph of the function \$PAR
138 \{ans_rule(4)\} is the graph of the function's first derivative \$PAR
139 \{ans_rule(4)\} is the graph of the function's second derivative \$PAR
140 END_TEXT
141 ANS(std_str_cmp_list( @sa ) );
142
143 ENDDOCUMENT();        # This should be the last executable line in the problem.
```