########################################################################### # # Implements the Matrix class. # # @@@ Still needs lots of work @@@ # package Value::Matrix; my $pkg = 'Value::Matrix'; use strict; use vars qw(@ISA); @ISA = qw(Value); use overload '+' => \&add, '-' => \&sub, '*' => \&mult, '/' => \&div, '**' => \&power, '.' => \&Value::_dot, 'x' => \&Value::cross, '<=>' => \&compare, 'cmp' => \&compare, 'neg' => sub {$_[0]->neg}, 'nomethod' => \&Value::nomethod, '""' => \&stringify; # # Convert a value to a matrix. The value can be: # a list of numbers or list of (nested) references to arrays of numbers # a point, vector or matrix object # sub new { my $self = shift; my$class = ref($self) ||$self; my $M = shift; return bless {data =>$M->data}, $class if (Value::class($M) =~ m/Point|Vector|Matrix/ && scalar(@_) == 0); $M = [$M,@_] if ((defined($M) && ref($M) ne 'ARRAY') || scalar(@_) > 0); Value::Error("Matrices must have at least one entry") unless defined($M) && scalar(@{$M}) > 0; return $self->matrixMatrix(@{$M}) if (ref($M->[0]) eq 'ARRAY'); return$self->numberMatrix(@{$M}); } # # (Recusrively) make a matrix from a list of array refs # and report errors about the entry types # sub matrixMatrix { my$self = shift; my $class = ref($self) || $self; my ($x,$m); my @M = (); my$d = scalar(@{$_[0]}); my$isFormula = 0; foreach $x (@_) { if (Value::isFormula($x)) {push(@M,$x);$isFormula = 1} else { $m =$pkg->new($x); push(@M,$m); $isFormula = 1 if Value::isFormula($m); } } my ($type,$len) = ($M[0]->entryType->{name},$M[0]->length); foreach $x (@M) { Value::Error("Matrix rows must all be the same type") unless (defined($x->entryType) && $type eq$x->entryType->{name}); Value::Error("Matrix rows must all be the same length") unless ($len eq$x->length); } return $self->formula([@M]) if$isFormula; bless {data => [@M]}, $class; } # # Form a 1 x n matrix from a list of numbers # (could become a row of an m x n matrix) # sub numberMatrix { my$self = shift; my $class = ref($self) || $self; my @M = (); my$isFormula = 0; foreach my $x (@_) { Value::Error("Matrix row entries must be numbers") unless (Value::isNumber($x)); push(@M,$x);$isFormula = 1 if Value::isFormula($x); } return$self->formula([@M]) if $isFormula; bless {data => [@M]},$class; } # # Recursively get the entries in the matrix and return # an array of (references to arrays of ... ) numbers # sub value { my $self = shift; my$M = $self->data; return @{$M} if Value::class($M->[0]) ne 'Matrix'; my @M = (); foreach my$x (@{$M}) {push(@M,[$x->value])} return @M; } # # The number of rows in the matrix (for n x m) # or the number of entries in a 1 x n matrix # sub length {return scalar(@{shift->{data}})} # # Recursively get the dimensions of the matrix. # Returns (n) for a 1 x n, or (n,m) for an n x m, etc. # sub dimensions { my $self = shift; my$r = $self->length; my$v = $self->data; return ($r,) if (Value::class($v->[0]) ne 'Matrix'); return ($r,$v->[0]->dimensions); } # # Return the proper type for the matrix # sub typeRef { my$self = shift; return Value::Type($self->class,$self->length, $Value::Type{number}) if (Value::class($self->data->[0]) ne 'Matrix'); return Value::Type($self->class,$self->length, $self->data->[0]->typeRef); } # # True if the matrix is a square matrix # sub isSquare { my$self = shift; my @d = $self->dimensions; return 0 if scalar(@d) > 2; return 1 if scalar(@d) == 1 &&$d[0] == 1; return $d[0] ==$d[1]; } # # True if the matrix is 1-dimensional (i.e., is a matrix row) # sub isRow { my $self = shift; my @d =$self->dimensions; return scalar(@d) == 1; } # # Make arbitrary data into a matrix, if possible # sub promote { my $x = shift; return$pkg->new($x,@_) if scalar(@_) > 0 || ref($x) eq 'ARRAY'; return $x if ref($x) eq $pkg; return$pkg->make(@{$x->data}) if Value::class($x) =~ m/Point|Vector/; Value::Error("Can't convert ".Value::showClass($x)." to a Matrix"); } ############################################ # # Operations on matrices # sub add { my ($l,$r,$flag) = @_; if ($l->promotePrecedence($r)) {return $r->add($l,!$flag)} ($l,$r) = (promote($l)->data,promote($r)->data); Value::Error("Matrix addition with different dimensions") unless scalar(@{$l}) == scalar(@{$r}); my @s = (); foreach my$i (0..scalar(@{$l})-1) {push(@s,$l->[$i] +$r->[$i])} return$pkg->make(@s); } sub sub { my ($l,$r,$flag) = @_; if ($l->promotePrecedence($r)) {return$r->sub($l,!$flag)} ($l,$r) = (promote($l)->data,promote($r)->data); Value::Error("Matrix subtraction with different dimensions") unless scalar(@{$l}) == scalar(@{$r}); if ($flag) {my$tmp = $l;$l = $r;$r = $tmp}; my @s = (); foreach my$i (0..scalar(@{$l})-1) {push(@s,$l->[$i] -$r->[$i])} return$pkg->make(@s); } sub mult { my ($l,$r,$flag) = @_; if ($l->promotePrecedence($r)) {return$r->mult($l,!$flag)} # # Constant multiplication # if (Value::matchNumber($r) || Value::isComplex($r)) { my @coords = (); foreach my $x (@{$l->data}) {push(@coords,$x*$r)} return $pkg->make(@coords); } # # Make points and vectors into columns if they are on the right # if (!$flag && Value::class($r) =~ m/Point|Vector/) {$r = (promote($r))->transpose} else {$r = promote($r)} # if ($flag) {my $tmp =$l; $l =$r; $r =$tmp} my @dl = $l->dimensions; my @dr =$r->dimensions; if (scalar(@dl) == 1) {@dl = (1,@dl); $l =$pkg->make($l)} if (scalar(@dr) == 1) {@dr = (1,@dr);$r = $pkg->make($r)} Value::Error("Can only multiply 2-dimensional matrices") if scalar(@dl) > 2 || scalar(@dr) > 2; Value::Error("Matices of dimensions $dl[0]x$dl[1] and $dr[0]x$dr[1] can't be multiplied") unless ($dl[1] ==$dr[0]); # # Do matrix multiplication # my @l = $l->value; my @r =$r->value; my @M = (); foreach my $j (0..$dr[1]-1) { my @row = (); foreach my $i (0..$dl[0]-1) { my $s = 0; foreach my$k (0..$dl[1]-1) {$s += $l[$i]->[$k] *$r[$k]->[$j]} push(@row,$s); } push(@M,$pkg->make(@row)); } return $pkg->make(@M); } sub div { my ($l,$r,$flag) = @_; if ($l->promotePrecedence($r)) {return $r->div($l,!$flag)} Value::Error("Can't divide by a Matrix") if$flag; Value::Error("Matrices can only be divided by numbers") unless (Value::matchNumber($r) || Value::isComplex($r)); Value::Error("Division by zero") if $r == 0; my @coords = (); foreach my$x (@{$l->data}) {push(@coords,$x/$r)} return$pkg->make(@coords); } sub power { my ($l,$r,$flag) = @_; if ($l->promotePrecedence($r)) {return$r->power($l,!$flag)} Value::Error("Can't use Matrices in exponents") if $flag; Value::Error("Only square matrices can be raised to a power") unless$l->isSquare; return Value::Matrix::I($l->length) if$r == 0; Value::Error("Matrix powers must be positive integers") unless $r =~ m/^[1-9]\d*$/; my $M =$l; foreach my $i (2..$r) {$M =$M*$l} return$M; } # # Do lexicographic comparison # sub compare { my ($l,$r,$flag) = @_; if ($l->promotePrecedence($r)) {return$r->compare($l,!$flag)} ($l,$r) = (promote($l)->data,promote($r)->data); Value::Error("Matrix comparison with different dimensions") unless scalar(@{$l}) == scalar(@{$r}); if ($flag) {my$tmp = $l;$l = $r;$r = $tmp}; my$cmp = 0; foreach my $i (0..scalar(@{$l})-1) { $cmp =$l->[$i] <=>$r->[$i]; last if$cmp; } return $cmp; } sub neg { my$p = promote(@_)->data; my @coords = (); foreach my $x (@{$p}) {push(@coords,-$x)} return$pkg->make(@coords); } # # Transpose an n x m matrix # sub transpose { my $self = shift; my @d =$self->dimensions; if (scalar(@d) == 1) {@d = (1,@d); $self =$pkg->make($self)} Value::Error("Can't transpose ".scalar(@d)."-dimensional matrices") unless scalar(@d) == 2; my @M = (); my$M = $self->data; foreach my$j (0..$d[1]-1) { my @row = (); foreach my$i (0..$d[0]-1) {push(@row,$M->[$i]->data->[$j])} push(@M,$pkg->make(@row)); } return$pkg->make(@M); } # # Get an identity matrix of the requested size # sub I { my $d = shift;$d = shift if ref($d) eq$pkg; my @M = (); my @Z = split('',0 x $d); foreach my$i (0..$d-1) { my @row = @Z;$row[$i] = 1; push(@M,$pkg->make(@row)); } return $pkg->make(@M); } # # Extract a given row from the matrix # sub row { my$M = promote(shift); my $i = shift; return if$i == 0; $i-- if$i > 0; if ($M->isRow) {return if$i != 0; return $M} return$M->data->[$i]; } # # Extract a given element from the matrix # sub element { my$M = promote(shift); return $M->extract(@_); } # # Extract a given column from the matrix # sub column { my$M = promote(shift); my $j = shift; return if$j == 0; $j-- if$j > 0; my @d = $M->dimensions; my @col = (); return if$j+1 > $d[1]; return$M->data->[$j] if scalar(@d) == 1; foreach my$row (@{$M->data}) {push(@col,$pkg->make($row->data->[$j]))} return $pkg->make(@col); } # @@@ removeRow, removeColumn @@@ # @@@ Det, inverse @@@ ############################################ # # Generate the various output formats # sub stringify { my$self = shift; my $open =$Value::parens{Matrix}{open}; my $close =$Value::parens{Matrix}{close}; return $open.join(',',@{$self->data}).$close if (Value::class($self->data->[0]) ne 'Matrix'); return $open.join(",\n ",@{$self->data}).$close; } sub string { my$self = shift; my $equation = shift; my$open = shift || $Value::parens{Matrix}{open}; my$close = shift || $Value::parens{Matrix}{close}; my @coords = (); foreach my$x (@{$self->data}) { if (Value::isValue($x)) {push(@coords,$x->string($equation,$open,$close))} else {push(@coords,$x)} } return$open.join(',',@coords).$close; } # # Use \matrix to lay out matrices # sub TeX { my$self = shift; my $equation = shift; my$open = shift || $Value::parens{Matrix}{open}; my$close = shift || $Value::parens{Matrix}{close};$open = '\{' if $open eq '{';$close = '\}' if $close eq '}'; return$open.join(',',@{$self->data}).$close if ($self->isRow); my$TeX = ''; my @entries = (); foreach my $row (@{$self->data}) { foreach my $x (@{$row->data}) { push(@entries,(Value::isValue($x))?$x->TeX($equation,$open,$close):$x); } $TeX .= join(' &',@entries) . '\cr'."\n"; @entries = (); } return '\left'.$open.'\matrix{'."\n".$TeX.'}\right'.$close; } ########################################################################### 1;