## DESCRIPTION ## Integral calculus: indefinite integrals ## ENDDESCRIPTION ## KEYWORDS('integral calculus', 'indefinite integrals') ## DBsubject('WeBWorK') ## DBchapter('WeBWorK Tutorial') ## DBsection('Fort Lewis Tutorial 2011') ## Date('01/30/2011') ## Author('Paul Pearson') ## Institution('Fort Lewis College') ## TitleText1('') ## EditionText1('') ## AuthorText1('') ## Section1('') ## Problem1('') ########################### # Initialization DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "AnswerFormatHelp.pl", "parserFormulaUpToConstant.pl", ); TEXT(beginproblem()); ########################### # Setup Context("Numeric"); # # Specific antiderivative: # Marks correct e^x, e^x + pi, etc # \$specific = Formula("e^x"); # # General antiderivative # Marks correct e^x + C, e^x + C - 3, e^x + K, etc. # \$general = FormulaUpToConstant("e^x"); ########################### # Main text Context()->texStrings; BEGIN_TEXT Enter a specific antiderivative for \( e^x \): \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} \$BR \$BR Enter the most general antiderivative for \( e^x \): \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} END_TEXT Context()->normalStrings; ############################ # Answer evaluation \$showPartialCorrectAnswers = 1; ANS( \$specific->cmp(upToConstant=>1) ); ANS( \$general->cmp() ); ############################ # Solution Context()->texStrings; BEGIN_SOLUTION \${PAR}SOLUTION:\${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT();