ExpandedPolynomial1
Paultpearson (Talk  contribs) (Add link to PGML version in OPL) 

(8 intermediate revisions by 2 users not shown)  
Line 1:  Line 1:  
<h2>Polynomial Multiplication (Expanding)</h2>  <h2>Polynomial Multiplication (Expanding)</h2>  
−  <p style="backgroundcolor:#  +  [[File:ExpandedPolynomial1.png300pxthumbrightClick to enlarge]] 
+  <p style="backgroundcolor:#f9f9f9;border:black solid 1px;padding:3px;">  
This PG code shows how to require students to expand polynomial multiplication.  This PG code shows how to require students to expand polynomial multiplication.  
−  
−  
−  
−  
</p>  </p>  
+  * File location in OPL: [https://github.com/openwebwork/webworkopenproblemlibrary/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1.pg FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1.pg]  
+  * PGML location in OPL: [https://github.com/openwebwork/webworkopenproblemlibrary/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1_PGML.pg FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1_PGML.pg]  
+  <br clear="all" />  
<p style="textalign:center;">  <p style="textalign:center;">  
[[SubjectAreaTemplatesTemplates by Subject Area]]  [[SubjectAreaTemplatesTemplates by Subject Area]]  
Line 41:  Line 41:  
<pre>  <pre>  
DOCUMENT();  DOCUMENT();  
+  
loadMacros(  loadMacros(  
"PGstandard.pl",  "PGstandard.pl",  
Line 53:  Line 54:  
<p>  <p>  
<b>Initialization:</b>  <b>Initialization:</b>  
+  We must load <code>contextLimitedPolynomial.pl</code>  
</p>  </p>  
</td>  </td>  
Line 82:  Line 84:  
<p>  <p>  
<b>Setup:</b>  <b>Setup:</b>  
+  The macro <code>contextLimitedPolynomial.pl</code> provides two contexts:  
+  <pre>  
+  Context("LimitedPolynomial");  
+  Context("LimitedPolynomialStrict");  
+  </pre>  
+  The strict version does not allow any mathematical operations within coefficients, so <code>(5+3)x</code> must be simplified to <code>8x</code>.  
+  For more details, see [http://webwork.maa.org/pod/pg_TRUNK/macros/contextLimitedPolynomial.pl.html contextLimitedPolynomial.pl.html]  
+  </p>  
+  <p>  
We use the <code>LimitedPolynomialStrict</code> context, construct the coefficients <code>$b</code> and <code>$c</code> as Perl reals, and then construct <code>$expandedform</code> using these precomputed coefficients. This is because the LimitedPolynomialStrict context balks at answers that are not already simplified completely. Notice that we called the <code>>reduce()</code> method on the expanded form of the polynomial, which will ensure that the polynomial will be displayed as <code>x^2  6x + 4</code> instead of <code>x^2 + 6x + 4</code>.  We use the <code>LimitedPolynomialStrict</code> context, construct the coefficients <code>$b</code> and <code>$c</code> as Perl reals, and then construct <code>$expandedform</code> using these precomputed coefficients. This is because the LimitedPolynomialStrict context balks at answers that are not already simplified completely. Notice that we called the <code>>reduce()</code> method on the expanded form of the polynomial, which will ensure that the polynomial will be displayed as <code>x^2  6x + 4</code> instead of <code>x^2 + 6x + 4</code>.  
</p>  </p>  
Line 125:  Line 136:  
<p>  <p>  
<b>Answer Evaluation:</b>  <b>Answer Evaluation:</b>  
−  
</p>  </p>  
</td>  </td>  
Line 161:  Line 171:  
[[Category:Top]]  [[Category:Top]]  
−  [[Category:  +  [[Category:Sample Problems]] 
+  [[Category:Subject Area Templates]] 
Latest revision as of 15:53, 7 June 2015
Polynomial Multiplication (Expanding)
This PG code shows how to require students to expand polynomial multiplication.
 File location in OPL: FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1.pg
 PGML location in OPL: FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1_PGML.pg
PG problem file  Explanation 

Problem tagging: 

DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "contextLimitedPolynomial.pl", ); TEXT(beginproblem()); 
Initialization:
We must load 
# # Vertex form # Context("Numeric"); $h = 3; $k = 5; $vertexform = Compute("(x$h)^2$k"); # # Expanded form # Context("LimitedPolynomialStrict"); $b = 2 * $h; $c = $h**2  $k; $expandedform = Formula("x^2 + $b x + $c")>reduce(); 
Setup:
The macro Context("LimitedPolynomial"); Context("LimitedPolynomialStrict"); The strict version does not allow any mathematical operations within coefficients, so
We use the 
Context()>texStrings; BEGIN_TEXT The quadratic expression \( $vertexform \) is written in vertex form. Write the expression in expanded form \( ax^2 + bx + c \). $BR $BR \{ ans_rule(30) \} END_TEXT Context()>normalStrings; 
Main Text:
To help students understand how to format their answers, we give an example 
$showPartialCorrectAnswers = 1; ANS( $expandedform>cmp() ); 
Answer Evaluation: 
Context()>texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()>normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); 
Solution: 