ExpandedPolynomial1
From WeBWorK
(Difference between revisions)
(Created page with '<h2>Polynomial Multiplication (Expanding)</h2> <p style="backgroundcolor:#eeeeee;border:black solid 1px;padding:3px;"> This PG code shows how to require students to expand poly…') 

Line 45:  Line 45:  
"MathObjects.pl",  "MathObjects.pl",  
"contextLimitedPolynomial.pl",  "contextLimitedPolynomial.pl",  
−  
−  
);  );  
Line 55:  Line 53:  
<p>  <p>  
<b>Initialization:</b>  <b>Initialization:</b>  
−  
</p>  </p>  
</td>  </td>  
Line 69:  Line 66:  
#  #  
Context("Numeric");  Context("Numeric");  
−  +  $h = 3;  
−  +  $k = 5;  
−  +  
−  $h =  +  
−  $k =  +  
$vertexform = Compute("(x$h)^2$k");  $vertexform = Compute("(x$h)^2$k");  
Line 80:  Line 74:  
#  #  
Context("LimitedPolynomialStrict");  Context("LimitedPolynomialStrict");  
−  $  +  $b = 2 * $h; 
−  +  $c = $h**2  $k;  
−  $expandedform = Formula("x^2  +  $expandedform = Formula("x^2 + $b x + $c")>reduce(); 
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
</pre>  </pre>  
</td>  </td>  
Line 99:  Line 82:  
<p>  <p>  
<b>Setup:</b>  <b>Setup:</b>  
−  +  We use the <code>LimitedPolynomialStrict</code> context, construct the coefficients <code>$b</code> and <code>$c</code> as Perl reals, and then construct <code>$expandedform</code> using these precomputed coefficients. This is because the LimitedPolynomialStrict context balks at answers that are not already simplified completely.  
−  +  
−  +  
−  +  
−  +  
−  +  
−  +  
</p>  </p>  
</td>  </td>  
Line 118:  Line 95:  
BEGIN_TEXT  BEGIN_TEXT  
The quadratic expression \( $vertexform \)  The quadratic expression \( $vertexform \)  
−  is written in vertex form.  +  is written in vertex form. Write the 
+  expression in expanded form  
+  \( ax^2 + bx + c \).  
$BR  $BR  
−  
−  
−  
$BR  $BR  
\{ ans_rule(30) \}  \{ ans_rule(30) \}  
−  
−  
−  
−  
−  
−  
END_TEXT  END_TEXT  
Context()>normalStrings;  Context()>normalStrings;  
Line 137:  Line 107:  
<p>  <p>  
<b>Main Text:</b>  <b>Main Text:</b>  
−  +  To help students understand how to format their answers, we give an example <code>ax^2+bx+c</code> of what the answer should look like.  
</p>  </p>  
</td>  </td>  
Line 150:  Line 120:  
ANS( $expandedform>cmp() );  ANS( $expandedform>cmp() );  
−  
</pre>  </pre> 
Revision as of 12:29, 1 December 2010
Polynomial Multiplication (Expanding)
This PG code shows how to require students to expand polynomial multiplication.
 Download file: File:ExpandedPolynomial1.txt (change the file extension from txt to pg when you save it)
 File location in NPL:
NationalProblemLibrary/FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1.pg
PG problem file  Explanation 

Problem tagging: 

DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "contextLimitedPolynomial.pl", ); TEXT(beginproblem()); 
Initialization: 
# # Vertex form # Context("Numeric"); $h = 3; $k = 5; $vertexform = Compute("(x$h)^2$k"); # # Expanded form # Context("LimitedPolynomialStrict"); $b = 2 * $h; $c = $h**2  $k; $expandedform = Formula("x^2 + $b x + $c")>reduce(); 
Setup:
We use the 
Context()>texStrings; BEGIN_TEXT The quadratic expression \( $vertexform \) is written in vertex form. Write the expression in expanded form \( ax^2 + bx + c \). $BR $BR \{ ans_rule(30) \} END_TEXT Context()>normalStrings; 
Main Text:
To help students understand how to format their answers, we give an example 
$showPartialCorrectAnswers = 1; ANS( $expandedform>cmp() ); 
Answer Evaluation: Everything is as expected. 
Context()>texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()>normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); 
Solution: 