ExpandedPolynomial1
Polynomial Multiplication (Expanding)
This PG code shows how to require students to expand polynomial multiplication.
 File location in OPL: FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1.pg
 PGML location in OPL: FortLewis/Authoring/Templates/Algebra/ExpandedPolynomial1_PGML.pg
PG problem file  Explanation 

Problem tagging: 

DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "contextLimitedPolynomial.pl", ); TEXT(beginproblem()); 
Initialization:
We must load 
# # Vertex form # Context("Numeric"); $h = 3; $k = 5; $vertexform = Compute("(x$h)^2$k"); # # Expanded form # Context("LimitedPolynomialStrict"); $b = 2 * $h; $c = $h**2  $k; $expandedform = Formula("x^2 + $b x + $c")>reduce(); 
Setup:
The macro Context("LimitedPolynomial"); Context("LimitedPolynomialStrict"); The strict version does not allow any mathematical operations within coefficients, so
We use the 
Context()>texStrings; BEGIN_TEXT The quadratic expression \( $vertexform \) is written in vertex form. Write the expression in expanded form \( ax^2 + bx + c \). $BR $BR \{ ans_rule(30) \} END_TEXT Context()>normalStrings; 
Main Text:
To help students understand how to format their answers, we give an example 
$showPartialCorrectAnswers = 1; ANS( $expandedform>cmp() ); 
Answer Evaluation: 
Context()>texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()>normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); 
Solution: 