
WeBWorK Homework Problems with
Embedded Flash Applets

Day 1 Handout

1 Introduction

1.1 What is WeBWorK?

WeBWorK is a free Perl-based system for delivering individualized homework
problems over the web. It was originally developed in 1995 by Profs. Arnold
Pizer and Michael Gage at the University of Rochester Department of Mathe-
matics, for use in mathematics instruction. It is now supported by a team of
developers from several institutions and is used for a variety of subjects.

WeBWorK enhances the educational process in several ways. By provid-
ing students with immediate feedback as to the correctness of their answers,
students are encouraged to make multiple attempts until they succeed. By in-
dividualizing problems, cheating is discouraged. By providing instructors with
real-time statistics, lesson plans can be customized to better serve students.

The major way in which WeBWorK differs from other web-based homework
systems is in the way problems are written. The PG (“problem generation”)
language allows the inclusion of both Perl and LaTeX code, allowing problem au-
thors to take advantage of the syntactic efficiency of Perl and the typographical
flexibility of LaTeX (which is pretty much necessary for rendering mathematics
expressions).

The process of defining a problem is highly modular, with various pluggable
display macros, answer evaluators, and graders. This allows for a high degree
of freedom in defining how problems behave.

A library of ready to use problems is provided, with over 25,000 problems
contributed to the National Problem Library (or NPL) at last count. A large
collection of macro files which simplify writing new problems is also available.
(Use the MathObjects macros provided by Davide Cervone wherever possible
to simplify the writing of the problem and to make it easier to maintain.)

http://webwork.maa.org/wiki/Introduction http://webwork.maa.org/

http://webwork.maa.org/wiki/Main_Page

1.2 A brief tour of the WeBWorK interface

• Classlist Editor – The Classlist editor is where the list of students enrolled
in the class is maintained.

• Instructor Tools – This link provides access to a variety of instructor tools

• Homework Sets Editor

• Library Browser

1

http://webwork.maa.org/wiki/Introduction
http://webwork.maa.org/
http://webwork.maa.org/wiki/Main_Page

• Student Progress

• File Manager

1.3 WeBWorK is built from Perl

We will not be discussing much about Perl in this minicourse though it is un-
doubtedly true that an understanding of Perl is sometimes helpful in program-
ming in the PG language which we will use for writing WeBWorK homework
problems. There are many excellent resources for learning more about Perl:
http://www.perl.org/, http://perldoc.perl.org/perlintro.html. These
include resources particular to WeBWorK and Perl: http://webwork.maa.org/
w/images/7/7a/Webwork-PREP-2011-Webconference1-Slides.pdf, http://
webwork.maa.org/wiki/Basic_Perl_syntax#.
About PG

• PG is built on Perl

• PG provides macros (prewritten, re-usable code)

• PG displays questions in two modes: HTML and PDF output

• MathObjects is an extension of PG written by Davide Cervone(Union
College)

1.4 Overview

2 Basic setup

These instructions are designed to be step-by-step instructions on how to create
problems in the WeBWorK MathFest Minicourse 2012. The outline of the steps
is here, and each step is explained in greater detail below. In the first lesson we
will log in to the WeBWorK MathFest Minicourse 2012 course,
https://hosted2.webwork.rochester.edu/webwork2/mathfest2012/, use the
Homework set editor to create a problem set for the homework problems you
will create, generate 10 blank problems for your homework set, and create a file
to edit using WeBWorK’s editor.

Lesson 1 Logging in and Creating a Really Boring Problem
Set

1. Log in to the WeBWorK MathFest Minicourse 2012 course.
This should be straightforward. The URL is https://hosted2.
webwork.rochester.edu/webwork2/mathfest2012/, and your
username and password were provided to you.

2. On the left hand-side of your screen under Main Menu you will
see “Instructor Tools”. Under “Instructor Tools” select “Hmwk
Sets Editor”.

2

http://www.perl.org/
http://perldoc.perl.org/perlintro.html
http://webwork.maa.org/w/images/7/7a/Webwork-PREP-2011-Webconference1-Slides.pdf
http://webwork.maa.org/w/images/7/7a/Webwork-PREP-2011-Webconference1-Slides.pdf
http://webwork.maa.org/wiki/Basic_Perl_syntax#
http://webwork.maa.org/wiki/Basic_Perl_syntax#
https://hosted2.webwork.rochester.edu/webwork2/mathfest2012/
https://hosted2.webwork.rochester.edu/webwork2/mathfest2012/
https://hosted2.webwork.rochester.edu/webwork2/mathfest2012/

Figure 1: Select the mathfest2012 course from the list.

Figure 2: Enter your login information.

3

Figure 3: Select “Hmwk Sets Editor”.

3. Create a new Homework set.

4. Enter a name for your set in the space beside “Create a new set
named:”. I called my set “Margolius”. Ordinarily you would
name your set something like “Homework set 1” or “SeriesCon-
vergence”. Once you have chosen and entered a name, press
the “Take Action” button.

5. Click the “0” under “Edit Problems” and next to your set to
enter the problem set and edit it.

6. Add 10 blank problems. Press the “Save Changes” button to
complete this action.

4

Figure 4: Enter a name for your homework set.

5

Figure 5: Add 10 blank problems.

6

7. You have just created your first PG file. A copy of the file
“blankProblem.pg” has been placed in a subdirectory called
“set(+your homework set name)”.

8. Under “Instructor Tools” go to “File Manager”.

9. Select your folder. In my case, it is “setMargolius”. In gen-
eral you will be looking for a folder called “set” plus the name
you chose. I chose “Margolius” so my folder is “setMargolius”.
Double click on your folder.

10. There is the file I created.

11. To see the actual problem, click on “Homework Sets”, then
your problem set.

12. Then click one of the problems. Admittedly, this one is a bore.
Adding the blank problems though gives us a starting point.

7

13. We can also add problems in several other ways. We can select
problems from the National Problem Library and add them.
We can edit the source file line in the homework sets editor
to point to another PG file. We can copy problems from the
large number of examples on the wiki or we can write our own.
Usually if we want to write our own problems, we will want to
start with problems from somewhere else.

Lesson 2 Finding Problem Examples in the Wiki and In-
corporating Them into Problem Sets

1. Let’s create a homework problem with a dropdown list of choices
for the correct answer. A good way to do this is to search the
WeBWorK MAA wiki for a template. Go to http://webwork.

maa.org/wiki/.

2. Find the list of problem techniques http://webwork.maa.org/
wiki/Category:Problem_Techniques#. There are several ways
to get there. One way is to select documentation for problem
authors, http://webwork.maa.org/wiki/Category:Authors#
and then click on “Problem Techniques”.

3. Now choose “Pop-up lists” and navigate to this page.

8

http://webwork.maa.org/wiki/
http://webwork.maa.org/wiki/
http://webwork.maa.org/wiki/Category:Problem_Techniques#
http://webwork.maa.org/wiki/Category:Problem_Techniques#
http://webwork.maa.org/wiki/Category:Authors#

9

4. In WeBWorK, go to your homework set and open problem 1.
Click “Edit1”. This will open the blank problem. Notice that
the Edit1 link opens the editor in a new window (or tab). This
will allow you to navigate between the editor window and the
view of the problem as the student will see it. We are going to
replace it with the popup problem from the wiki.

5. First let’s save it to another file. I have called it “mypopup”.
I deleted the “local” subdirectory at the front of the file name
so it will save “mypopup.pg” in the “setMargolius” directory.
I checked the radio buttons to save it and replace the first
problem in my set. Now I’ll click the “Take Action!” button.
So far I have not changed the file itself, only its name.

6. If I go to the homework editor, I can see my “mypopup.pg” file

10

Figure 6: blankProblem PG code.

Figure 7: Rename the blankProblem file.

11

is the source for problem 1. If I go to the homework set itself,

I’ll see it is the same boring problem.

7. Return to editing the problem. Inside the problem editor, select
the source code (ctrl or cmd A will do this), then click delete.

8. Copy and paste the code portion of the example from the wiki
into your blank problem file.

A complete version of this example is in the “setsampleProblems”
directory in the file “popupSimple.pg”. It is problem number 2 in
the sampleProblems homework set.

A second popup example is given below (this is “mypopup2.pg”
in the Margolius problem set).

DOCUMENT();

loadMacros(

"PGstandard.pl",

"parserPopUp.pl",

);

TEXT(beginproblem());

generate a random number between 2 and 6 with a step size of 1

$a = random(2,6,1);

$m = random(2,6,1);

the arguments of PopUp are [list of answers],

12

Figure 8: Copy from the wiki.

correct answer

$popup = PopUp(["?", "converges", "diverges"], "converges");

BEGIN_TEXT

Consider the series

\[\sum_{n=$a}^\infty \frac{(n!)^{$m}}{($m n)!}\]

This series \{ $popup->menu() \}

END_TEXT

ANS($popup->cmp());

Context()->texStrings;

BEGIN_SOLUTION

13

$PAR SOLUTION $PAR

Using the ratio test, we can show that

\[\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|

=\lim_{n\to\infty}\left|\frac{\frac{((n+1)!)^{$m}}

{($m (n+1))!}}{\frac{(n!)^{$m}}{($m n)!}}\right|

=m^{-m}<1,\]

therefore the given series \{ $popup->correct_ans() \}.

END_SOLUTION

Context()->normalStrings;

ENDDOCUMENT();

Here is a screenshot of what this problem looks like in WeBWorK.
It is problem 2 in the set Margolius.

Figure 9: How the student sees the problem.

We will talk more formally about the structure of a WeBWorK
problem shortly. Right now, let’s look at the parts of this problem.
DOCUMENT(); · · · ENDDOCUMENT(); Begins and ends the problem. DOCUMENT();
and ENDDOCUMENT(); must appear in every PG problem.

14

loadMacros(

"PGstandard.pl",

"parserPopUp.pl",

);

The loadMacros function loads a set of helper files called macros.
We will need “PGstandard.pl” most of the time. “parserPopUp.pl”
is just for problems with popups.

TEXT(beginproblem()); Starts the initialization section of the
problem. Lines that begin with ‘#’ are comments.

$a and $m are Perl (and therefore PG) variables. All Perl/PG
scalar variables begin with a dollar sign.

$a = random(2,6,1);

assigns a random integer between 2 and 6 to the parameter $a.

$popup = PopUp(["?", "converges", "diverges"], "converges");

sets up the dropdown list. The possible choices are listed in square
brackets. The correct choice (“converges”) follows the square brack-
ets but is inside the parens.

BEGIN TEXT · · · END TEXT Begin and end the text of the problem
itself. The text in here is what the student will see.

The text between the delimiters \[and \] is LaTeX display
mode. LaTeX inline mode uses the delimiters \(and \). You can
learn more about LaTeX here: http://tobi.oetiker.ch/lshort/
lshort.pdf. So the code

\[\sum_{n=$a}^\infty \frac{(n!)^{$m}}{($m n)!}\]

generates
∞∑
n=2

(n!)5

(5n)!

when $a = 2 and $m = 5.

ANS($popup->cmp());

evaluates the answer and the text between BEGIN SOLUTION and
END SOLUTION gives the solution to the problem. The solution is
visible to the student after the homework deadline. The solution
section can be omitted.

15

http://tobi.oetiker.ch/lshort/lshort.pdf
http://tobi.oetiker.ch/lshort/lshort.pdf

A more detailed solution is given in the “mypopup3.pg” file in
the Margolius problem set. The “mypopup3.pg” sample problem
illustrates the use of string concatenation and for-loops in generating
a more informative solution for the student.

Exercises

1. Create your own drop-down list homework problem in your
problem set.

2. Copy another example problem type from the wiki. Get it to
function, then modify it. Several sample problem types copied
from the wiki are also available in the sampleProblems home-
work set.

3. Some of the wiki example problems are in convenient files that
you can just click on and download. This Riemann sums prob-
lem is an example of that: http://webwork.maa.org/wiki/

RiemannSums1#. Download this problem and place it in your
problem set or go to the Subject Area templates and choose an-
other template to download: http://webwork.maa.org/wiki/
SubjectAreaTemplates#.

3 Using the Library Browser

Lesson 3 Using the Library Browser
You can also find both your own problems and problems from

the National Problem Library using the Library Browser.

1. Click the Library Browser link on the left side bar, in the Main
Menu. This brings up the browser that lets you look at prob-
lems in this course, or in the National Problem Library (NPL).

2. In the Browse row, under the first bold black horizontal line,
click the “Local Problems” link to view the problems in this
course.

3. Then click the “Select a Problem Collection” selector in the sec-
tion below the Browse area, and select “setsampleProblems” to
see the problems in the sampleProblem problem set. Repeat

16

http://webwork.maa.org/wiki/RiemannSums1#
http://webwork.maa.org/wiki/RiemannSums1#
http://webwork.maa.org/wiki/SubjectAreaTemplates#
http://webwork.maa.org/wiki/SubjectAreaTemplates#

these steps and select your problem set instead of “setsam-
pleProblems” to see the problems you have copied or created.

4. Note that you can edit the problems from the Library Browser
and you can try them. We won’t edit a problem right now.

5. Click on the Library Browser under instructor tools. Note
that the National Problem Library button at the top left is
depressed.

Figure 10: Inside the Library Browser.

6. In basic search, under “Subject” choose “Calculus”; under “Chap-
ter” choose “Infinite sequences and series” and under “Section”
choose “The Integral Test and Estimates of Sums”. Then click
“View Problems”.

7. Notice that many of the problems have a turquoise bar across
the screen that says “MathObjects version”. Select the first
MathObjects version probem and any other MathObjects prob-
lems that interest you and add them to your problem set. To
do this, go to “Add problems to Target Set:” at the top of the
screen. Select your set and then scroll through the problems
until you see a MathObjects version problem that interests you
and check “Add this problem to the target set on the next up-
date”. You may select multiple problems if you wish, but pease
include the first one shown (Library/ma123DB/set10/s11 3 2.pg).

17

Figure 11: Select “The Integral Test and Estimates of Sums”.

We are sticking with the MathObjects version problems be-
cause these are coded in the newer style and are the recom-
mended style for problems to code currently and to contribute
to the NPL. We want to learn from problems that represent
best practices.

Figure 12: Click the radio button to add this problem to your homework set.

8. Once you have added the problem or problems that interest
you, click “Update Set”.

18

Exercises

1. Explore the Library Browser. Look at “Advanced Search” and
explore other options in the Library Browser.

2. Choose at least three more MathObjects version problems on
any topic you choose and add them to your problem set.

4 Structure of a PG file

Lesson 4 Structure of a PG file

• Tagging info (for the indexing in the National Problem Library)

• Initialization (loading macros, etc.)

• Setup (define parameters, randomization, etc.)

• Main text (the part that gets displayed to students)

• Answer evaluation (checking the submitted answers)

• Solution (optional) and end document (mandatory)

Consider the problem below (given as a screenshot and also with
PG code), also provided in your sample problems as problem 5.

##KEYWORDS(’integral’, ’substitution’)

DBsubject(’Calculus’)

DBchapter(’Integration’)

19

Figure 13: Screenshot of Berney’s volume of revolution problem.

DBsection(’Integration’’Definite Integrals’

’Area Between Curves’’Volumes of Revolution’)

Date(’6/18/2010’)

Author(’Berney Montavon’)

Institution(’Cleveland State University’)

TitleText1(’Calculus: Early Transcendentals’)

EditionText1(’2nd’)

AuthorText1(’Stewart’)

Section1(’11’)

Problem1(’1’)

This should be the first executable line in the problem.

DOCUMENT();

loadMacros(

"PGstandard.pl",

"MathObjects.pl",

"contextFraction.pl",

);

TEXT(beginproblem());

20

$showPartialCorrectAnswers = 1;

Context("Fraction");

$a = random(3,5,1);

$a1=$a+1;

$funca1 = "x^2-$a x -$a1";

$funca2 = "x-$a1";

$funcb1 = "x^2-$a x ";

$funcb2 = "x";

$con =

Formula("1/30*$a^5+1/3*$a^4+$a^3+4/3*$a^2+5/6*$a+1/5")->reduce;

$volumea = Compute("pi*$con");

$volumeb = $volumea;

BEGIN_TEXT

a) Determine the volume of the solid obtained by rotating

the region bounded by \(y=$funca1\) and \(y=$funca2\)

about the x-axis.

$BR

$BR

Volume = \{ans_rule(45)\}.

$BR

$BR

b) Determine the volume of the solid obtained by rotating

the region bounded by \(y=$funcb1\) and \(y=$funcb2\)

about the line \(y=$a1\).

$BR

$BR

Volume = \{ans_rule(45)\}.

$BR

$BR

END_TEXT

Context()->normalStrings;

21

ANS($volumea->cmp);

ANS($volumeb->cmp);

COMMENT(’MathObjectversion’);

ENDDOCUMENT();

4.1 Tagging info

This portion of the problem is the tagging information:

##KEYWORDS(’integral’, ’substitution’)

DBsubject(’Calculus’)

DBchapter(’Integration’)

DBsection(’Integration’’Definite Integrals’

’Area Between Curves’’Volumes of Revolution’)

Date(’6/18/2010’)

Author(’Berney Montavon’)

Institution(’Cleveland State University’)

TitleText1(’Calculus: Early Transcendentals’)

EditionText1(’2nd’)

AuthorText1(’Stewart’)

Section1(’11’)

Problem1(’1’)

The # at the start of a line marks a comment. Also, if a # is
in the middle of a line, the text that follows will be treated as a
comment, that is, it will be ignored. The comments in the tagging
portion of the problem are required to file a problem in the NPL,
specifically DBsubject, DBchapter, DBsection are all required to
file a problem in the NPL. Berney wrote the problem in June, 2010.
He was a CSU student at the time. The problem is adapted from
Stewart’s ’Calculus: Early Transcendentals’, 2nd edition, section 11
problem 1.

4.2 Initialization

This should be the first executable line in the problem.

DOCUMENT();

loadMacros(

22

"PGstandard.pl",

"MathObjects.pl",

"contextFraction.pl",

);

TEXT(beginproblem());

PGstandard.pl and MathObjects.pl are Perl macros that should al-
ways be loaded. ”contextFraction.pl”, with Context(”Fraction”);
will improve the formatting of the answer the student sees.
TEXT(beginproblem()); dynamically generates the problem number
in the homework set.

4.3 Setup

There are two answer blanks in the problem. Setting
$showPartialCorrectAnswers to 1 lets the student know if she got
one of the answers correct and which one that was. We set the
MathObjects context to numeric and then define some parameters
used in the problem. $a is a random integer between 3 and 5. $a1 is
one more than $a. We define two functions for the first part of the
problem: x2−ax−(a+1) and x−(a+1). For the second part of the
problem, we define another two functions: x2−ax and x. $volumea
is the solution to the first part of the problem. The solution to the
second part of the problem is $volumeb which is the same as the
solution to the first part, so we have: $volumeb = $volumea;. The
single = is defining $volumeb as being equal to $volumea.

The Compute() function determines the kind of MathObject from
the Context and from the syntax of its argument. This is usually
a string value that is in the form that a student could type. The
Compute function also sets the correct answer to be the exact string
that it was given, so that if a student were asked to enter a number
that matched $a from above and asked to see the correct answer
(after the due date), then π will appear as part of the answer, not
just a decimal number. This gives you more control over the for-
mat of correct answers that are shown to students. For more in-
formation see the Introduction to MathObjects in the wiki: http:

//webwork.maa.org/wiki/Introduction_to_MathObjects#. We
are also providing the Introduction to MathObjects pages to you as
a handout.

23

http://webwork.maa.org/wiki/Introduction_to_MathObjects#
http://webwork.maa.org/wiki/Introduction_to_MathObjects#

$showPartialCorrectAnswers = 1;

Context("Fraction");

$a = random(3,5,1);

$a1=$a+1;

$funca1 = "x^2-$a x -$a1";

$funca2 = "x-$a1";

$funcb1 = "x^2-$a x ";

$funcb2 = "x";

$con =

Formula("1/30*$a^5+1/3*$a^4+$a^3+4/3*$a^2+5/6*$a+1/5")->reduce;

$volumea = Compute("pi*$con");

$volumeb = $volumea;

Note that the range of values for $a is pretty narrow. Don’t over
randomize when you write your problems. Choose parameter values
that you would not mind doing by hand when a student brings a
question to you. The code
Formula(”1/30 ∗ $a∧5 + 1/3 ∗ $a∧4 + $a∧3 + 4/3 ∗ $a∧2 + 5/6 ∗ $a + 1/5”)− > reduce;
simplifies the coefficient on π that the student will see as the correct
answer after the problem due date. The correct answer will display
as a fraction times π, but decimal approximations are still accepted.

4.4 Main text

The main text appears between BEGIN TEXT · · · END TEXT. In this
block we leave Perl mode and enter TEXT mode. Within TEXT
mode, we can switch to LaTeXmode via \(\) for inline math, or \[\]
for displaystylemath. $BR represents a linebreak. \ans rule(45)\
creates an answer blank of length 45. The Perl variables preceded
with a $ sign will be replaced with their values in the display seen
by the student.

24

BEGIN_TEXT

a) Determine the volume of the solid obtained by rotating the

region bounded by \(y=$funca1\) and \(y=$funca2\)

about the x-axis.

$BR

$BR

Volume = \{ans_rule(45)\}.

$BR

b) Determine the volume of the solid obtained by rotating the

region bounded by \(y=$funcb1\) and \(y=$funcb2\)

about the line \(y=$a1\).

$BR

Volume = \{ans_rule(45)\}.

$BR

COMMENT(’MathObjectversion’);

END_TEXT

4.5 Answer Evaluation

When using MathObjects, the answer evaluator usually takes the
simple form shown here. The evaluators are listed in the order of
the answer blanks in the problem (unless we are using a named
answer field).

Context()->normalStrings;

ANS($volumea->cmp);

ANS($volumeb->cmp);

ENDDOCUMENT();

The method − > cmp() is defined for any MathObject. ANS(); re-
turns either a 0 or a 1 and takes that result and records it in the
database of student scores.

The COMMENT(MathObjectversion); only shows up for professors
in the Library Browser.

25

Don’t forget ENDDOCUMENT();. This closes the problem file.

4.6 Solution

The solution section is optional and we haven’t included one in this
sample problem. You can see examples of the solution section in
the problem files mypopup2.pg and mypopup3.pg in the Margolius
problem set. Several of the problems in the sampleProblem problem
set also have solutions.

Exercises
Create three WeBWorK problem containing the standard sec-

tions of a WeBWorK problem: Tagging info, Initialization (loading
macros, etc.), Setup (define parameters, randomization, etc.), Main
text (the part that gets displayed to students), Answer evaluation
(checking the submitted answers), and Solution.

1. Problem 1 in the sample set asks the student to find the deriva-
tive of a simple function. Problem 4 asks for the general an-
tiderivative. Choose a simple function and ask the student to
find its derivative and general antiderivative. Include at least
one randomized parameter.

2. Go to the Function Composition problem technique http://

webwork.maa.org/wiki/ComposingFunctions#, copy the prob-
lem and modify it to ask a similar but different function compo-
sition question. Be sure to include the tagging section portion
of the problem.

3. Modify the MathObjects library problem you copied:
Library/ma123DB/set10/s11 3 2.pg. First, give the problem
a new name. I have called mine setMargolius/myIntegralTest.pg.
Select the “ Save as” and “Replace set(your set name)/problem
(your problem number)” radio buttons and then press the “Take
Action!” button. Now you can edit the problem. Change the
integral test example. One possibility is to randomize the prob-
lem so that it converges in some cases and diverges in others.

26

http://webwork.maa.org/wiki/ComposingFunctions#
http://webwork.maa.org/wiki/ComposingFunctions#

5 MathObjects

See MathObjects handout. http://webwork.maa.org/wiki/Introduction_
to_MathObjects#

Exercises

1. Both Library/maCalcDB/setSeries8Power/eva8 5a 9.pg and
Library/Michigan/Chap9Sec5/Q23.pg are library problems in-
volving the interval of convergence of a power series. The sec-
ond of these two problems is written in the MathObjects style.
Modify Library/maCalcDB/setSeries8Power/eva8 5a 9.pg so
it is also a MathObjects problem. Begin by saving the problem
to a new file.

2. Add a solution to your MathObjects version of
Library/maCalcDB/setSeries8Power/eva8 5a 9.pg.

3. Write your own power series question using MathObjects.

4. The previous three problems involve the interval context. Ear-
lier in the course, we worked on problems involving the Fraction
context. Write a problem that involves one of the other con-
texts. There are many examples in the NPL that you can use
as a starting point.

6 Custom answer checkers

At times, you want WeBWorK to check a student answer with a
method different from those available through the default − > cmp()
method of a MathObject. You can write your own answer checking
subroutine to override the answer checker routine for the MathOb-
ject that is used to check the answer.

Here is a simple example which checks to see if a student’s answer
is smaller than a given value. The example can be modified to
accept answers depending on whatever criteria you wish to apply.
The complete code is below. First we have the usual initialization
section:

DOCUMENT();

27

http://webwork.maa.org/wiki/Introduction_to_MathObjects#
http://webwork.maa.org/wiki/Introduction_to_MathObjects#

loadMacros(

"PGstandard.pl",

"MathObjects.pl",

);

TEXT(beginproblem());

While setting the Context to "Numeric", we also set the tolerance
to zero. We do this because we are basing the correctness of a stu-
dent’s answer on a comparison, and want the full decimal accuracy
available in WeBWorK to be used. If we do not do this, the de-
fault tolerance in WeBWorK will cause a comparison like x < 4 to
evaluate to false if x = 3.999.

$context = Context("Numeric");

$context->flags->set(tolerance=>0);

We set an upper bound numerical variable, as a MathObject:

$upperBound = Compute(’4’);

We type the problem text and include an answer box for the student
to fill:

Context()->texStrings;

BEGIN_TEXT

Enter a number which is smaller than \$upperBound: \{ ans_rule(25) \}

END_TEXT

Context()->normalStrings;

(We didn’t use any TEX above, but you may wish to use it in your
own examples.) We end the problem with answer evaluation, with
the custom answer checker set as follows:

ANS($upperBound->cmp(checker=>sub {

my ($correct, $student, $ansHash) = @_;

return $student < $correct;

}));

ENDDOCUMENT();

Here is what is happening in this code. First, we call ->cmp() on
the MathObject $upperBound, while including a custom checker to

28

override the default behavior of ->cmp(). The checker routine is
a Perl subroutine that takes as its arguments the correct answer,
student answer, and answer hash that is being processed in the
answer comparison (we are not making use of the answer hash in
this example). The return value should be 1 if the student’s answer
is correct, and 0 otherwise. Because the ->cmp() method was called
on the MathObject $upperBound, the value of $correct within the
subroutine will be set to the value of $upperBound. Also, $student
will be set according to the number input into the answer box by the
student. The subroutine returns a value of zero or one depending
on the logical comparison $student < $correct.

Exercises

1. Create a problem with two answer fields, where the student
must input a number smaller than 5 in the first box, and a
number greater than 10 in the second box. Check each answer
with a separate custom answer checker.

2. Create a problem where a student must input a single value
which lies between two given numbers $lowerBound and $upperBound.
[Hint: the answer checker can be called on a numeric MathOb-
ject $ans with a completely arbitrary value that is not used in
the checker subroutine.]

7 Where to Find Things

• http://webwork.maa.org/wiki/Main_Page

• Tutorial by Paul Pearson, Fort Lewis College
http://webwork.maa.org/w/images/a/ab/WeBWorK_Problem_

Authoring_Tutorial.pdf

http://webwork.maa.org/w/images/7/7a/Webwork-PREP-2011-Webconference1-Slides.

pdf

• Problem templates by subject area http://webwork.maa.org/

wiki/SubjectAreaTemplates

• Index of Problem Techniques
http://webwork.maa.org/wiki/IndexOfProblemTechniques

29

http://webwork.maa.org/wiki/Main_Page
http://webwork.maa.org/w/images/a/ab/WeBWorK_Problem_Authoring_Tutorial.pdf
http://webwork.maa.org/w/images/a/ab/WeBWorK_Problem_Authoring_Tutorial.pdf
http://webwork.maa.org/w/images/7/7a/Webwork-PREP-2011-Webconference1-Slides.pdf
http://webwork.maa.org/w/images/7/7a/Webwork-PREP-2011-Webconference1-Slides.pdf
http://webwork.maa.org/wiki/SubjectAreaTemplates
http://webwork.maa.org/wiki/SubjectAreaTemplates
http://webwork.maa.org/wiki/IndexOfProblemTechniques

• WeBWorK documentation http://webwork.maa.org/pod/pg_

TRUNK/

• Introduction to LaTeX http://tobi.oetiker.ch/lshort/lshort.

pdf

• https://courses.webwork.maa.org/webwork2/gage_course/

Knoxsville_MAA_2006_cervone/?login_practice_user=true

• https://courses.webwork.maa.org/webwork2/cervone_course/

setAIM-Talk/?login_practice_user=true

• http://webwork.maa.org/wiki/Category:MathObjects

30

http://webwork.maa.org/pod/pg_TRUNK/
http://webwork.maa.org/pod/pg_TRUNK/
http://tobi.oetiker.ch/lshort/lshort.pdf
http://tobi.oetiker.ch/lshort/lshort.pdf
https://courses.webwork.maa.org/webwork2/gage_course/Knoxsville_MAA_2006_cervone/?login_practice_user=true
https://courses.webwork.maa.org/webwork2/gage_course/Knoxsville_MAA_2006_cervone/?login_practice_user=true
https://courses.webwork.maa.org/webwork2/cervone_course/setAIM-Talk/?login_practice_user=true
https://courses.webwork.maa.org/webwork2/cervone_course/setAIM-Talk/?login_practice_user=true
http://webwork.maa.org/wiki/Category:MathObjects

	Introduction
	What is WeBWorK?
	A brief tour of the WeBWorK interface
	WeBWorK is built from Perl
	Overview

	Basic setup
	Using the Library Browser
	Structure of a PG file
	Tagging info
	Initialization
	Setup
	Main text
	Answer Evaluation
	Solution

	MathObjects
	Where to Find Things

