hw-16-properties-of-functions

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Determine Increasing/Decreasing Intervals of Function
- Determine Local Maximum/Minimum Values of Function
- Identify Even and Odd Functions
- Determine Symmetry of Function

Functions and symbols that WeBWorK understands.

$\underline{\text { Links to some useful WeBWorK pages for students }}$

1. $(1 \mathrm{pt})$

Consider the function whose graph is sketched:

Find the open intervals over which the function is increasing or decreasing.
Write the answers in interval notation.
The open x-intervals over which the function is increasing:

The open x-intervals over which the function is decreasing:
Function has local maximum at $x=$ \qquad
Function has local minimum at $x=$
Note: if there are no such points, enter none
2. (1 pt) Consider the function shown in the following graph.

Find open x-intervals where the function is decreasing:
Find open x-intervals where the function is increasing:
Note: use interval notation to enter your answer.
Function has local maximum at $x=$ \qquad
Function has local minimum at $x=$ \qquad
Note: if there are no such points, enter none

3. $(1 \mathrm{pt})$

Consider the function whose graph is sketched:

Find the open intervals over which the function is increasing or decreasing.
Write the answers in interval notation.

The open x-intervals over which the function is increasing:

The open x-intervals over which the function is decreasing:
4. (1 pt) Determine algebraically whether each functions is even, odd, or neither
? 1. Function $f(x)=-5 x^{3}$ is ...
? 2. Function $f(x)=-5 x^{5}$ is ...
? 3. Function $f(x)=8 x^{4}$ is ...
? 4. Function $f(x)=-3 x^{2}-9$ is ...

5. (1 pt)

For the following functions, enter \mathbf{E} if they are even, \mathbf{O} if they are odd, and \mathbf{N} if they are neither even nor odd.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(x)=x^{3} \\
& f(x)=x^{2}+x^{3}
\end{aligned}
$$

6. (1 pt)

Use E for Even and O for Odd and N for Neither Let

$$
h=f \times g,
$$

i.e., h is the product of f and g. Then
h is __ if f and g are both even,
h is __ if f is even and g is odd, and
h is ___ if f and g are both odd.

7. (1 pt)

A function f is even if it satisfies $f(x)=f(-x)$ for all x in its domain. An example of an even function is $f(x)=x^{2}$ since $\left(x^{2}\right)=(-x)^{2}$.
f is odd if it satisfies $f(x)=-f(-x)$ for all x in its domain. An example of an odd function is $f(x)=x^{3}$ since $x^{3}=-(-x)^{3}$.

Functions may be neither even nor odd, for example the function $f(x)=x^{2}+x^{3}$ is in that category.

For each function below enter the letter \mathbf{E} if the function is even, the letter \mathbf{O} (not the digit $0!$) if it's odd, and the letter \mathbf{N} if it's neither even nor odd.
$-f(x)=x^{4}$.
$f(x)=x^{5}$.
$f(x)=x^{4}+x^{5}$.
8. (1 pt) Below, enter x if the graph of the given equation is symmetric with respect to the x-axis, y if it is symmetric with respect to the y axis, o (lower case O) if it is symmetric with respect to the origin, and n (for None) if it has none of these three symmetries.

$$
\begin{aligned}
& -y=x^{3}+x \\
& -y=\left(x^{3}+1\right)^{2} \\
& -y=\frac{1}{1+x^{2}} \\
& -y=\frac{x}{1+x^{2}} .
\end{aligned}
$$

