25 Properties of Polynomials

Due:

12/14/2015 at 06:00am EST.

Students will be able to:

- Describe the terms, degree, and coefficients of a polynomials
- Determine the x-intercepts and y-intercepts of a graph of polynomial
- Determine the end behavior of the graph of polynomial
- Evaluate polynomial at a point

Functions and symbols that WeBWorK understands.
Links to some useful WeBWorK pages for students

1. $(1 \mathrm{pt})$

The Figure above shows the graph of

$$
f(x)=x^{3}-3 x .
$$

The answers below are all integers.

The graph f has a relative maximum at $x=$ \qquad of $f(x)=$

It has a relative minimum at $x=$ \qquad of $f(x)=$ \qquad
The graph is decreasing in the interval [\qquad

2. $(1 \mathrm{pt})$

The Figure above shows the graph of

$$
f(x)=3 x^{2}-x^{3}+1
$$

The answers below are all integers.

The graph f has a relative maximum at $x=$ \qquad of $f(x)=$ It has a relative minimum at $x=$ \qquad of $f(x)=$ \qquad The graph is increasing in the interval [_ , _].

3. $(1 \mathrm{pt})$

The Figure above shows the graph of

$$
f(x)=\frac{x^{5}}{5}-\frac{x^{4}}{2}-\frac{x^{3}}{3}+x^{2} .
$$

The answers below are all integers.

The graph of f shows \qquad relative maxima and \qquad relative minima,
for a total of \qquad relative extrema.

The graph is increasing on the bounded interval [_ , __].
Note: a bounded interval is one of finite length.
4. (1 pt) Classify the following polynomial according to its degree and number of terms:

$$
f(x)=-8 x
$$

$f(x)$ is a ? ?
NOTE: You have only one attempt at this problem.
5. (1 pt) Given the function $P(x)=x^{3}-1 x^{2}-30 x$, find its y-intercept is \qquad
its x-intercepts are $x_{1}=$ \qquad $x_{2}=$ \qquad and $x_{3}=$ \qquad with $x_{1}<x_{2}<x_{3}$
When $x \rightarrow \infty, y \rightarrow ـ_{\infty}$ (Input + or - for the answer)
When $x \rightarrow-\infty, y \rightarrow \ldots \infty$ (Input + or - for the answer)
6. (1 pt) Given the function $P(x)=(x-8)(x+4)(7 x-2)$, find
its y-intercept is \qquad
its x-intercepts are $x_{1}=$ \qquad $x_{2}=$ \qquad and $x_{3}=$ \qquad with $x_{1} \leq x_{2} \leq x_{3}$
When $x \rightarrow \infty, y \rightarrow \ldots \infty$ (Input + or - for the answer)
When $x \rightarrow-\infty, y \rightarrow \ldots \infty$ (Input + or - for the answer)
7. (1 pt) Given the function $P(x)=(x-2)^{2}(x-7)$, find its y-intercept is \qquad its x-intercepts are $x_{1}=$ \qquad and $x_{2}=$ \qquad with $x_{1}<x_{2}$ When $x \rightarrow \infty, y \rightarrow$ _ ∞ (Input + or - for the answer) When $x \rightarrow-\infty, y \rightarrow \ldots \infty$ (Input + or - for the answer)
8. (1 pt) Given $P(x)=2 x^{3}-2 x^{2}+4 x+8$,
$P(x) \rightarrow$ \qquad if $x \rightarrow-\infty$, $P(x) \rightarrow$ \qquad if $x \rightarrow \infty$, If your answer is $-\infty$, input -infinity; if your answer is ∞, input infinity.
9. (1 pt) Determine the following for: $-4 x^{7}+(-3) x^{3}$
a) Determine the coefficient and the degree of each term.

Term	Coefficient	Degree
$-4 x^{7}$	-	-
$-3 x^{3}$	-	-

b) The degree of the polynomial is \qquad the leading term is \qquad and the leading coefficient is
10. (1 pt) Find the indicated functional values.

$$
f(x)=3 x^{3}+2 x^{2}+3 x-236
$$

a) $f(-3)=$ \qquad
b) $f(0)=$ \qquad
c) $f(4)=$ \qquad

