25 Properties of Polynomials

Due: 12/14/2015 at 06:00am EST.

Students will be able to:

- Describe the terms, degree, and coefficients of a polynomials
- Determine the *x*-intercepts and *y*-intercepts of a graph of polynomial
- Determine the end behavior of the graph of polynomial
- Evaluate polynomial at a point

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt)

The Figure above shows the graph of

$$f(x) = x^3 - 3x.$$

The answers below are all integers.

The graph f has a relative maximum at x =____ of f(x) =____. It has a relative minimum at x =____ of f(x) =____. The graph is decreasing in the interval [_____, ___].

The Figure above shows the graph of

$$f(x) = 3x^2 - x^3 + 1.$$

The answers below are all integers.

The graph f has a relative maximum at $x = _$ of $f(x) = _$. It has a relative minimum at $x = _$ of $f(x) = _$.

The graph is increasing in the interval [____, ___].

3. (1 pt)

The Figure above shows the graph of

$$f(x) = \frac{x^5}{5} - \frac{x^4}{2} - \frac{x^3}{3} + x^2.$$

The answers below are all integers.

The graph of f shows _____ relative maxima and _____ relative minima, for a total of _____ relative extrema.

The graph is increasing on the bounded interval [____, ___].

Note: a bounded interval is one of finite length.

4. (1 pt) Classify the following polynomial according to its degree and number of terms:

$$f(x) = -8x$$

f(x) is a ???. NOTE: You have only one attempt at this problem.

5. (1 pt) Given the function $P(x) = x^3 - 1x^2 - 30x$, find its *y*-intercept is ______ its *x*-intercepts are $x_1 =$ _____, $x_2 =$ _____ and $x_3 =$ _____ with $x_1 < x_2 < x_3$ When $x \to \infty$, $y \to$ ____ ∞ (Input + or - for the answer) When $x \to -\infty$, $y \to$ ____ ∞ (Input + or - for the answer)

6. (1 pt) Given the function P(x) = (x-8)(x+4)(7x-2), find its y-intercept is _______ its x-intercepts are $x_1 =$ _____, $x_2 =$ _____ and $x_3 =$ _____ with $x_1 \le x_2 \le x_3$ When $x \to \infty$, $y \to$ ____ (Input + or - for the answer) When $x \to -\infty$, $y \to$ ____ (Input + or - for the answer)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

7. (1 pt) Given the function $P(x) = (x-2)^2(x-7)$, find its *y*-intercept is ______ its *x*-intercepts are $x_1 = _$ ____ and $x_2 = _$ ___ with $x_1 < x_2$ When $x \to \infty$, $y \to __\infty$ (Input + or - for the answer) When $x \to -\infty$, $y \to __\infty$ (Input + or - for the answer)

8. (1 pt) Given $P(x) = 2x^3 - 2x^2 + 4x + 8$, $P(x) \rightarrow \underline{\qquad}$ if $x \rightarrow -\infty$, $P(x) \rightarrow \underline{\qquad}$ if $x \rightarrow \infty$, If your answer is $-\infty$, input -infinity; if your answer is ∞ , input infinity.

9. (1 pt) Determine the following for: $-4x^7 + (-3)x^3$ a) Determine the coefficient and the degree of each term.

Term	Coefficient	Degree
$-4x^{7}$		
$-3x^{3}$		

b) The degree of the polynomial is _____ the leading term is _____, and the leading coefficient is _____.

10. (1 pt) Find the indicated functional values.

$$f(x) = 3x^3 + 2x^2 + 3x - 236$$

a) f(-3) =_____

b) f(0) = _____

c) f(4) =_____