hw-12-Circles

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Determine Equation of a Circle Using Diameter and Symmetry
- Determine Equation of a Circle Using Center and Point
- Determine Standard Form of a Circle by Completing The Square
- Determine Center and Radius of a Circle Using Standard Form

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. $(1 \mathrm{pt})$ Find the equation of the circle whose diameter has endpoints $(-8,10)$ and $(7,-1)$. Write it in the form

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and identify h, k, and r.

$$
\begin{aligned}
h & = \\
k & = \\
r & =
\end{aligned}
$$

2. (1 pt) Find the equation of the circle that has center $(-2,-5)$ and is tangent to the y-axis. Write it in the form

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and identify h, k, and r.

$$
\begin{aligned}
h & = \\
k & = \\
r & =
\end{aligned}
$$

3. (1 pt) (a) Find the equation of the circle whose diameter has endpoints $(-9,-10)$ and $(5,-9)$. Write it in the form

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and identify h, k, and r.

$$
\begin{aligned}
h & = \\
k & = \\
r & =
\end{aligned}
$$

(b) Find the equation of the circle that has center $(-1,4)$ and is tangent to the y-axis. Write it in the form

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

and identify h, k, and r.

$$
\begin{aligned}
h & = \\
k & = \\
r & =
\end{aligned}
$$

4. $(1 \mathrm{pt})$ Find the standard form for the equation of a circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ with a diameter that has endpoints of $(0$, $-3)$ and (10, -7).
$h=$
$k=$
$r^{2}=$
5. (1 pt) Find the center (h, k) and the radius r of the circle

$$
5 x^{2}-2 x+5 y^{2}-6 y-4=0
$$

$h=$ \qquad
$k=$ \qquad
$r=$ \qquad
6. (1 pt) Find the standard form for the equation of a circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

with a diameter that has endpoints $(-10,5)$ and $(3,-10)$.
$h=$ \qquad
$k=$ \qquad
$r=$
7. $(1 \mathrm{pt})$ Find an equation of the circle with center $(10,-20)$ and radius 6 in the form of

$$
(x-A)^{2}+(y-B)^{2}=C^{2}
$$

where A, B, and C are constants. Then
$A=$ \qquad
$B=$ \qquad
$C=$ \qquad
8. (1 pt) Find an equation of the circle with center at $(-3,7)$ and passing through $(5,-1)$ in the form of $(x-A)^{2}+(y-B)^{2}=$ C where A, B, C are constants. Then
A is : \qquad
B is : \qquad
C is : \qquad
9. $(1 \mathrm{pt})$ Find an equation of the circle with center at $(6,6)$ that is tangent to the y-axis in the form of $(x-A)^{2}+(y-B)^{2}=C$ where A, B, C are constants. Then
A is : \qquad
B is : \qquad
C is : \qquad
10. (1 pt) Find an equation of the circle with center at the origin and passing through $(-3,-1)$ in the form of

$$
(x-A)^{2}+(y-B)^{2}=C
$$

where A, B, C are constants. Then
$A=$
$B=$
$C=$
11. (1 pt) Find the equation of the circle centered at $(2,-8)$ with radius 8
in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$
The equation is \qquad
12. (1 pt) Find an equation of the circle with center $(9,-8)$ and radius 5 in the form of $(x-h)^{2}+(y-k)^{2}=r^{2}$.

The equation is \qquad
13. (1 pt) Find an equation of the circle with center at the origin and passing through $(-3,1)$ in the standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$.

The equation is \qquad
14. (1 pt) Find the center and radius of the circle whose equation is $x^{2}+3 x+y^{2}+7 y-17=0$.

The center of the circle is at point \qquad The radius of the circle is \qquad _.

The same equation in the standard form $(x-h)^{2}+(y-k)^{2}=$ r^{2} is
15. ($1 \mathrm{pt)}$) Find the center and radius of the circle given by the equation
$x^{2}+y^{2}-2 x-8 y+13=0$
The center is at point
The radius is :
The same equation in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$ is
16. (1 pt) Find the center and radius of the circle given by the equation $x^{2}+y^{2}+8 x+10 y+5=0$

The center is at point: \qquad
The radius is :
The same equation in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$ is
17. (1 pt) Find the standard form for the equation of a circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ with a diameter that has endpoints $(-1,1)$ and $(4,-8)$.

The equation is
18. (1 pt) Find the center and radius of the circle whose equation is $2 x^{2}+4 x+2 y^{2}-15=0$.

The center of the circle is at point \qquad
The radius of the circle is \qquad
The same equation in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$ is

