hw-12-Circles

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Determine Equation of a Circle Using Diameter and Symmetry
- Determine Equation of a Circle Using Center and Point
- Determine Standard Form of a Circle by Completing The Square
- Determine Center and Radius of a Circle Using Standard Form

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Find the equation of the circle whose diameter has endpoints (-8, 10) and (7, -1). Write it in the form

$$(x-h)^2 + (y-k)^2 = r^2$$

and identify *h*, *k*, and *r*.

 $\begin{array}{rcl} h & = & & \\ k & = & & \\ r & = & & \\ \end{array}$

2. (1 pt) Find the equation of the circle that has center (-2, -5) and is tangent to the y-axis. Write it in the form

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

and identify *h*, *k*, and *r*.

 $\begin{array}{rcl} h & = & & \\ k & = & & \\ r & = & & \\ \end{array}$

3. (1 pt) (a) Find the equation of the circle whose diameter has endpoints (-9, -10) and (5, -9). Write it in the form

$$(x-h)^2 + (y-k)^2 = r^2$$

and identify h, k, and r.

- $\begin{array}{cccc} h & = & & \\ k & = & & \\ \end{array}$
- r = _____

(b) Find the equation of the circle that has center (-1,4) and is tangent to the y-axis. Write it in the form

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

and identify *h*, *k*, and *r*.

- *h* = _____
- *k* = _____
- *r* = _____

4. (1 pt) Find the standard form for the equation of a circle $(x-h)^2 + (y-k)^2 = r^2$ with a diameter that has endpoints of (0, -3) and (10, -7).

 $\begin{array}{c} h = \underline{\qquad} \\ k = \underline{\qquad} \\ r^2 = \underline{\qquad} \end{array}$

5. (1 pt) Find the center (h,k) and the radius *r* of the circle

 $5x^2 - 2x + 5y^2 - 6y - 4 = 0.$

h = _____

r =

k = _____

6. (1 pt) Find the standard form for the equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

with a diameter that has endpoints (-10, 5) and (3, -10).

$h = _$	
$k = _{-}$	
r —	
/	

7. (1 pt) Find an equation of the circle with center (10, -20) and radius 6 in the form of

$$(x-A)^2 + (y-B)^2 = C^2$$

where A, B, and C are constants. Then

 $A = ___$ $B = ___$ $C = ___$

8. (1 pt) Find an equation of the circle with center at (-3,7) and passing through (5,-1) in the form of $(x-A)^2 + (y-B)^2 = C$ where *A*, *B*, *C* are constants. Then

A is : _____ B is : _____ C is : _____

9. (1 pt) Find an equation of the circle with center at (6,6) that is tangent to the y-axis in the form of $(x-A)^2 + (y-B)^2 = C$ where *A*,*B*,*C* are constants. Then

A is : _____

B is : _____

C is : _____

10. (1 pt) Find an equation of the circle with center at the origin and passing through (-3, -1) in the form of

$$(x-A)^2 + (y-B)^2 = C$$

where A, B, C are constants. Then

 $A = ___$ $B = ___$

 $D = _$ $C = _$

11. (1 pt) Find the equation of the circle centered at (2, -8) with radius 8 in the form $(x - h)^2 + (y - k)^2 = r^2$

The equation is _____

12. (1 pt) Find an equation of the circle with center (9, -8) and radius 5 in the form of $(x - h)^2 + (y - k)^2 = r^2$. The equation is ______

13. (1 pt) Find an equation of the circle with center at the origin and passing through (-3,1) in the standard form $(x-h)^2 + (y-k)^2 = r^2$.

The equation is _____

14. (1 pt) Find the center and radius of the circle whose equation is $x^2 + 3x + y^2 + 7y - 17 = 0$.

The center of the circle is at point _____. The radius of the circle is ____.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

The same equation in the standard form $(x-h)^2 + (y-k)^2 = r^2$ is _____

15. (1 pt) Find the center and radius of the circle given by the equation $\frac{1}{2}$

 $x^2 + y^2 - 2x - 8y + 13 = 0$

The center is at point _____

The radius is : _____

The same equation in the form $(x - h)^2 + (y - k)^2 = r^2$ is

16. (1 pt) Find the center and radius of the circle given by the equation $x^2 + y^2 + 8x + 10y + 5 = 0$

The center is at point: _____

The radius is : _____

The same equation in the form $(x-h)^2 + (y-k)^2 = r^2$ is

17. (1 pt) Find the standard form for the equation of a circle $(x-h)^2 + (y-k)^2 = r^2$ with a diameter that has endpoints (-1,1) and (4,-8). The equation is ______

18. (1 pt) Find the center and radius of the circle whose equation is $2x^2 + 4x + 2y^2 - 15 = 0$.

The center of the circle is at point _____

The radius of the circle is _____.

The same equation in the form $(x - h)^2 + (y - k)^2 = r^2$ is