30 Polynomials with Real Zeros

Due:

12/14/2015 at 06:00am EST.

Students will be able to:

- Use Rational Zero Theorem to find zeros of polynomials
- Determine the maximum possible number of positive real zeros and negative real zeros of a polynomial
- Factor a polynomial using Factor Theorem
- Use Synthetic Division to divide polynomials

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Find all rational zeros of the polynomial

$$
P(x)=4 x^{4}-12 x^{3}-12 x^{2}-12 x-16
$$

Its rational zeros are $x_{1}=_, x_{2}=_, x_{3}=$ \qquad and $x_{4}=\quad$ with $x_{1} \leq x_{2} \leq x_{3} \leq x_{4}$
If the polynomial has only three rational zeros, input them at x_{1}, x_{2} and x_{3}; If the polynomial has only two rational zeros, input them at x_{1} and x_{2}; if the polynomial has only one rational zero, input it at x_{1}.
2. (1 pt) Find all the real zeros of the polynomial

$$
P(x)=x^{3}-4 x^{2}-13 x+6
$$

Its real zeros are $x_{1}=$ \qquad , $x_{2}=$ \qquad and $x_{3}=$ \qquad with $x_{1} \leq x_{2} \leq x_{3}$
If the polynomial has only two real zeros, input them at x_{1} and x_{2}; if the polynomial has only one real zero, input it at x_{1}.
3. (1 pt) For the function $y=x^{5}+5 x^{3}-24 x$, find all real zeros.
Note: If there is more than one real zero, separate the answers by commas. Also, if you want to enter the square root of a number, like two, enter sqrt(2).
The real zeros are $x=$
4. $(1 \mathrm{pt})$ List all possible rational roots for the function

$$
f(x)=5 x^{4}-4 x^{3}-5 x^{2}+9 x+55 .
$$

Give your list in increasing order. Beside each possible rational root, type "yes" if it is a root and "no" if it is not a root. Leave any unnecessary answer blanks empty.

Possible rational root: \qquad Is it a root? \qquad
Possible rational root: \qquad Is it a root? \qquad
Possible rational root: \qquad Is it a root? \qquad

5. (1 pt) Give all of the zeros of the polynomial

$$
P(x)=x^{3}-3 x^{2}-7 x-15
$$

as a comma separated list.
6. (1 pt) $f(x)=x^{8}+11 x^{7}+20 x^{6}-566 x^{5}-5104 x^{4}-$ $13200 x^{3}+9216 x^{2}+61152 x^{1}+43264$

What is the maximum number of positive real roots for $f(x)$?
What is the maximum number of negative real roots for $f(x)$?
7. (1 pt) Find all rational zeros of the polynomial

$$
P(x)=4 x^{4}+9 x^{3}-5 x^{2}+9 x-9 .
$$

Give a comma separated list of the rational zeros. If there are no rational zeros, enter the word none .
8. (1 pt) Factor $P(x)=x^{3}+5 x^{2}+8 x+16$ into linear and irreducible quadratic factors with real coefficients.
Let $P(x)=(x+a)\left(x^{2}+b x+c\right)$. Then
$a=$ \qquad
$b=$ \qquad
$c=$ \qquad
9. (1 pt) Use the Factor Theorem to show that $x-1 / 2$ is a factor of

$$
P(x)=2 x^{3}-9 x^{2}+8 x-2
$$

The function value $P(1 / 2)=$ \qquad
Thus, $x-1 / 2$ is a \qquad of $P(x)$.
10. (1 pt) Use synthetic division and the Remainder Theorem to evaluate $P(c)$, where

$$
P(x)=x^{4}+7 x^{3}+3 x^{2}+25 x+35, \quad c=-7 .
$$

The quotient is \qquad
The remainder is \qquad
$P(c)=$ \qquad
11. (1 pt) Use the Factor Theorem to show that $x-1$ is a factor of

$$
P(x)=x^{3}-7 x^{2}+14 x-8
$$

The function value $P(1)=$
Thus, $x-1$ is a \qquad of $P(x)$.
12. (1 pt) Use synthetic division and the Remainder Theorem to evaluate $P(c)$, where

$$
P(x)=x^{2}+2 x+2, \quad c=-1
$$

The quotient is \qquad The remainder is \qquad
$P(c)=$ \qquad
13. (1 pt) Use synthetic division and the Remainder Theorem to evaluate $P(c)$, where

$$
P(x)=x^{3}-6 x^{2}+9 x-5, \quad c=2
$$

The quotient is \qquad
The remainder is \qquad
$P(c)=$ \qquad

