39b Systems of Linear Equations in 3 or More Variables

Due:

12/15/2015 at 06:00am EST.

Students will be able to:

- Produce augmented matrix for a system of equations
- Perform the row operations on an augmented matrix
- Solve systems of linear equations in 3 variables
- Solve systems of linear equations in 4 variables

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) The system of equations

$$\begin{cases} 2x - 3y - z = 5, \\ -x + 2y - 5z = -32 \\ 5x - y - z = -6 \end{cases}$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.

- *x* = _____
- y = _____
- *z* = _____

2. (1 pt) The system of equations

$$\begin{cases} x + 2y - z = 0, \\ x + z = 0, \\ 2x - y - z = 16. \end{cases}$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.

- *x* = _____
- y = _____
- *z* = _____

3. (1 pt) The system of equations

$$\begin{cases} x - 2y + z = 5, \\ y + 2z = 9, \\ x + y + 3z = 12 \end{cases}$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.

- x =_____
- y = _____
- *z* = _____

4. (1 pt) Find the formula for quadratic function $y = ax^2 + bx + c$ if its graph passes through the following three points: (-1, -4), (2, -7), (3, -4)

The formula for the polynomial is

y = _____

5. (1 pt) The system of equations

$$x-2y+z=7$$

$$y+2z=-1,$$

$$x+y+3z=0$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.

x = _____ y = _____ z = _____

 $\begin{cases} -5x + 81y - 45z = 56 \\ -68y - 6z = 9 \\ 89x + 25z = 10 \end{cases}$

7. (1 pt) On the augmented matrix A below

	1	$^{-2}$	-2	-2
A =	1	-1	5	5
	3	5	5	5

perform the following row operations

 $(\mathbf{a}) - 1R_1 + R_2 \to R_2$

followed by

(b) $3R_1 + R_3 \rightarrow R_3$

and then write the resulting augmented matrix below:

Now perform the following row operation

(c) $1R_2 + R_3 \rightarrow R_3$

on the matrix you enterd above and then write the resulting augmented matrix below:

8. (1 pt) The system of equations

$$2x - 3y - z = -9,$$

$$-x + 2y - 5z = 22$$

$$5x - y - z = -14$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.

$$\begin{array}{c}
x = \\
y = \\
z = \\
\end{array}$$

9. (1 pt) The system of equations

$$\begin{cases} 2x - 9y - 4z = -17, \\ -x + 5y = 0, \\ x - 3y - 7z = -30 \end{cases}$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.

 $\begin{array}{c} x = \underline{\qquad} \\ y = \underline{\qquad} \end{array}$

z = _____

10. (1 pt) The system of equations

$$\begin{cases} w - 4x - 4y - 4z = -47, \\ 3w - 11x - 15y - 10z = -135, \\ w - 6x + 3y - 12z = -76 \\ 9w - 33x - 44y - 33z = -417 \end{cases}$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.

- w = _____ x = _____ y = ____
- *z* = _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

11. (1 pt) The system of equations

 $\begin{cases} 5w - 22x - 28y - 12z = -42, \\ -2w + 9x + 12y + 4z = 15, \\ w - 3x + y - 7z = -20 \\ -4w + 18x + 26y + 11z = 34 \end{cases}$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.

$$w = _______$$

$$x = ________$$

$$y = _______$$

$$z = _______$$

12. (1 pt) The system of equations

$$\begin{cases} w - 4x - 4y - 4z = 2, \\ 2w - 7x - 7y - 9z = 13, \\ 3w - 14x - 13y - 9z = -16 \\ -4w + 14x + 12y + 17z = -23 \end{cases}$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.

