Students will be able to:

- Produce augmented matrix for a system of equations
- Perform the row operations on an augmented matrix
- Solve systems of linear equations in 3 variables
- Solve systems of linear equations in 4 variables

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) The system of equations
 \[
 \begin{align*}
 2x - 3y - z &= 5, \\
 -x + 2y - 5z &= -32, \\
 5x - y - z &= -6
 \end{align*}
 \]
 has a unique solution. Find the solution using Gaussin Elimination method or Gauss-Jordan elimination method.
 \[
 x = \quad y = \quad z =
 \]

2. (1 pt) The system of equations
 \[
 \begin{align*}
 x + 2y - z &= 0, \\
 x + z &= 0, \\
 2x - y - z &= 16.
 \end{align*}
 \]
 has a unique solution. Find the solution using Gaussin Elimination method or Gauss-Jordan elimination method.
 \[
 x = \quad y = \quad z =
 \]

3. (1 pt) The system of equations
 \[
 \begin{align*}
 x - 2y + z &= 5, \\
 y + 2z &= 9, \\
 x + y + 3z &= 12
 \end{align*}
 \]
 has a unique solution. Find the solution using Gaussin Elimination method or Gauss-Jordan elimination method.
 \[
 x = \quad y = \quad z =
 \]

4. (1 pt) Find the formula for quadratic function
 \[y = ax^2 + bx + c\]
 if its graph passes through the following three points:
 \[-1, -4, \quad 2, -7, \quad 3, -4\]
 The formula for the polynomial is
 \[y = \]

5. (1 pt) The system of equations
 \[
 \begin{align*}
 x - 2y + z &= 7, \\
 y + 2z &= -1, \\
 x + y + 3z &= 0
 \end{align*}
 \]
 has a unique solution. Find the solution using Gaussin Elimination method or Gauss-Jordan elimination method.
 \[
 x = \quad y = \quad z =
 \]

6. (1 pt) Write the augmented matrix of the system
 \[
 \begin{align*}
 -5x + 81y - 45z &= 56, \\
 -68y - 6z &= 9, \\
 89x + 25z &= 10
 \end{align*}
 \]
 perform the following row operations
 (a) \(-1R_1 + R_2 \rightarrow R_2\)
 followed by
 (b) \(3R_1 + R_3 \rightarrow R_3\)
 and then write the resulting augmented matrix below:
 \[
 \begin{matrix}
 \hline
 \hline
 & -5 & 81 & -45 & 56 \\
 \hline
 -68 & 0 & -6 & 9 \\
 89 & 25 & 0 & 10 \\
 \hline
 \end{matrix}
 \]

7. (1 pt) On the augmented matrix \(A\) below
 \[
 A = \begin{bmatrix}
 1 & -2 & -2 \\
 1 & -1 & 5 \\
 -3 & 5 & 5 \\
 \end{bmatrix}
 \]
 perform the following row operations
 (a) \(-1R_1 + R_2 \rightarrow R_2\)
 followed by
 (b) \(3R_1 + R_3 \rightarrow R_3\)
 and then write the resulting augmented matrix below:
 \[
 \begin{matrix}
 \hline
 \hline
 & -5 & 81 & -45 & 56 \\
 \hline
 -68 & 0 & -6 & 9 \\
 89 & 25 & 0 & 10 \\
 \hline
 \end{matrix}
 \]

8. (1 pt) The system of equations
 \[
 \begin{align*}
 2x - 3y - z &= -9, \\
 -x + 2y - 5z &= 22, \\
 5x - y - z &= -14
 \end{align*}
 \]
 has a unique solution. Find the solution using Augmented Matrix and Row Operations.
 \[
 x = \quad y = \quad z =
 \]
9. (1 pt) The system of equations
\[
\begin{align*}
2x - 9y - 4z &= -17, \\
-x + 5y &= 0, \\
x - 3y - 7z &= -30
\end{align*}
\]
has a unique solution. Find the solution using Augmented Matrix and Row Operations.
\[
x = \\
y = \\
z =
\]

10. (1 pt) The system of equations
\[
\begin{align*}
w - 4x - 4y - 4z &= -47, \\
3w - 11x - 15y - 10z &= -135, \\
w - 6x + 3y - 12z &= -76 \\
9w - 33x - 44y - 33z &= -417
\end{align*}
\]
has a unique solution. Find the solution using Augmented Matrix and Row Operations.
\[
w = \\
x = \\
y = \\
z =
\]

11. (1 pt) The system of equations
\[
\begin{align*}
5w - 22x - 28y - 12z &= -42, \\
-2w + 9x + 12y + 4z &= 15, \\
w - 3x + y - 7z &= -20 \\
-4w + 18x + 26y + 11z &= 34
\end{align*}
\]
has a unique solution. Find the solution using Augmented Matrix and Row Operations.
\[
w = \\
x = \\
y = \\
z =
\]

12. (1 pt) The system of equations
\[
\begin{align*}
w - 4x - 4y - 4z &= 2, \\
2w - 7x - 7y - 9z &= 13, \\
3w - 14x - 13y - 9z &= -16 \\
-4w + 14x + 12y + 17z &= -23
\end{align*}
\]
has a unique solution. Find the solution using Augmented Matrix and Row Operations.
\[
w = \\
x = \\
y = \\
z =
\]