39b Systems of Linear Equations in 3 or More Variables

Due:

12/15/2015 at 06:00am EST.
Students will be able to:

- Produce augmented matrix for a system of equations
- Perform the row operations on an augmented matrix
- Solve systems of linear equations in 3 variables
- Solve systems of linear equations in 4 variables

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. $(1 \mathrm{pt})$ The system of equations

$$
\left\{\begin{array}{l}
2 x-3 y-z=5 \\
-x+2 y-5 z=-32 \\
5 x-y-z=-6
\end{array}\right.
$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad
2. $(1 \mathrm{pt})$ The system of equations

$$
\left\{\begin{array}{l}
x+2 y-z=0 \\
x+z=0 \\
2 x-y-z=16
\end{array}\right.
$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.
$x=$ \qquad
$y=$ \qquad
$z=$
3. $(1 \mathrm{pt})$ The system of equations

$$
\left\{\begin{array}{l}
x-2 y+z=5 \\
y+2 z=9 \\
x+y+3 z=12
\end{array}\right.
$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.
$x=$ \qquad
$y=$
$=$ \qquad
4. (1 pt) Find the formula for quadratic function $y=a x^{2}+b x+c$
if its graph passes through the following three points:
$(-1,-4),(2,-7),(3,-4)$
The formula for the polynomial is $y=$
5. (1 pt) The system of equations

$$
\begin{aligned}
& x-2 y+z=7 \\
& y+2 z=-1 \\
& x+y+3 z=0
\end{aligned}
$$

has a unique solution. Find the solution using Gaussin elimination method or Gauss-Jordan elimination method.
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad
6. (1 pt) Write the augmented matrix of the system

$$
\begin{aligned}
& \left\{\begin{array}{r}
-5 x+81 y-45 z=56 \\
-68 y-6 z=9 \\
89 x+25 z=10
\end{array}\right. \\
& {\left[\begin{array}{ll}
-- & - \\
- & - \\
- & -
\end{array}\right]}
\end{aligned}
$$

7. (1 pt) On the augmented matrix A below

$$
A=\left[\begin{array}{rrr|r}
1 & -2 & -2 & -2 \\
1 & -1 & 5 & 5 \\
-3 & 5 & 5 & 5
\end{array}\right]
$$

perform the following row operations
(a) $-1 R_{1}+R_{2} \rightarrow R_{2}$
followed by
(b) $3 R_{1}+R_{3} \rightarrow R_{3}$
and then write the resulting augmented matrix below:

$$
\left[\begin{array}{lll|l}
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right]
$$

Now perform the following row operation
(c) $1 R_{2}+R_{3} \rightarrow R_{3}$
on the matrix you enterd above and then write the resulting augmented matrix below:

$$
\left[\begin{array}{lll|l}
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right]
$$

8. (1 pt) The system of equations

$$
\left\{\begin{array}{l}
2 x-3 y-z=-9 \\
-x+2 y-5 z=22 \\
5 x-y-z=-14
\end{array}\right.
$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad
9. (1 pt) The system of equations

$$
\left\{\begin{array}{l}
2 x-9 y-4 z=-17 \\
-x+5 y=0 \\
x-3 y-7 z=-30
\end{array}\right.
$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.
$x=$
$y=$
$y=$
\qquad
$z=$ \qquad
10. (1 pt) The system of equations

$$
\left\{\begin{array}{l}
w-4 x-4 y-4 z=-47 \\
3 w-11 x-15 y-10 z=-135 \\
w-6 x+3 y-12 z=-76 \\
9 w-33 x-44 y-33 z=-417
\end{array}\right.
$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.
$w=$ \qquad
$x=$ \qquad
$y=$
$z=$ \qquad
11. (1 pt) The system of equations

$$
\left\{\begin{array}{l}
5 w-22 x-28 y-12 z=-42 \\
-2 w+9 x+12 y+4 z=15 \\
w-3 x+y-7 z=-20 \\
-4 w+18 x+26 y+11 z=34
\end{array}\right.
$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.
$w=$ \qquad
$x=$ \qquad
$y=$ \qquad
$z=$
12. (1 pt) The system of equations

$$
\left\{\begin{array}{l}
w-4 x-4 y-4 z=2 \\
2 w-7 x-7 y-9 z=13 \\
3 w-14 x-13 y-9 z=-16 \\
-4 w+14 x+12 y+17 z=-23
\end{array}\right.
$$

has a unique solution. Find the solution using Augmented Matrix and Row Operations.
$w=$ \qquad
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad

