hw-14b-Domain-and-Range-Functions

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Determine Domain of a Function
- Determine Range of a Function

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. ($1 \mathrm{pt)}$ The domain of the function

$$
f(x)=\sqrt{16-x^{2}}
$$

is the interval
and its range is
2. (1 pt) The domain of the function

$$
f(x)=\frac{x+4}{x+2}
$$

is the set of all real number except
\qquad and its range is the set of all numbers except

Hint: To find the domain observe that we can't divide by zero. To find the range solve an equation.
3. (1 pt) Find the domain of each function. Write your answer in interval notation.
(a) $f(x)=5 x+8$

Domain of $f(x)$ is \qquad
(b) $g(x)=\sqrt{-(9 x+4)}$

Domain of $g(x)$ is \qquad
(c) $h(x)=\frac{5 x+8}{\sqrt{-(9 x+4)}}$

Domain of $h(x)$ is \qquad
Note: you want to use interval notation in your answers.
4. (1 pt) Find the domain of each function. Write your answer in interval notation.
(a) $f(x)=\frac{8 x}{x^{2}-64}$

Domain of $f(x)$ is
(b) $g(x)=\frac{8 x}{x^{2}+64}$

Domain of $g(x)$ is \qquad
Note: you want to use interval notation in your answers.
5. (1 pt) Find the domain of each function. Write your answer in interval notation.
(a) $f(x)=\frac{4 x+8}{8 x-2}$

Domain of $f(x)$ is \qquad
(b) $g(x)=\frac{8 x-2}{4 x+8}$

Domain of $g(x)$ is \qquad

Note: you want to use interval notation in your answers.
6. (1 pt) Find the domain of each function. Write your answer in interval notation.
(a) $f(x)=\frac{-4 x-3}{x^{3}-16 x}$

Domain of $f(x)$ is \qquad
(b) $g(x)=\frac{-4 x-3}{x^{3}+16 x}$

Domain of $g(x)$ is \qquad
Note: you want to use interval notation in your answers.
7. (1 pt) Let the function f be defined by $f(x)=\frac{1}{\sqrt{1-x^{2}}}$. Indicate whether the following statements are True (T) or False (F). You must get all answers correct in order to receive credit.
_1. 1 is in the domain of f
2. $f(x)$ is never positive.
3. All positive real numbers are in the domain of f
4. 0 is in the domain of f
5. $f(x)$ is never negative.
6. All negative real numbers are in the domain of f
7. $f(x)$ is never zero.

Hint: Draw the graph of f.
8. (1 pt) The domain of the function

$$
f(x)=\frac{\sqrt{4-x^{2}}}{\sqrt{1-x^{2}}}
$$

is the interval

Hint: Both radicands must be non-negative, and we can't divide by zero.

