27 Properties of Rational Functions

Due:

12/14/2015 at 06:00am EST.

Students will be able to:

- Identify domain of rational functions
- Identify vertical asymptotes of rational functions
- Identify horizontal or slanted asymptotes of rational functions
- Identify any holes a graph of rational function might have
- Find the x-intercepts and y-intercepts of a graph of rational function

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Consider the function

$$
f(x)=\frac{-4}{4 x-3}
$$

Find the vertical asymptote(s). If there is more than one vertical asymptote give a list of the x-values separated by commas. $x=$ \qquad
If this function has a horizontal asymptote, give its y-value. If there is no horizontal asymptote, type in none .

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-values separated by commas. If there is no x-intercept type in none .
$x=$ \qquad
Find the y-intercept
$y=$
2. (1 pt) Consider the function

$$
f(x)=\frac{-4 x+8}{9 x+7}
$$

Enter the equations of the vertical asymptotes. If there are no vertical asymptotes, enter none. If there is more than one vertical asymptote, enter a list of the equations separated by a comma (e.g., $x=20, x=-7$).

Vertical asymptotes: \qquad

Enter the equations of the horizontal asymptotes. If there are no horizontal asymptotes, enter none. If there is more than one horizontal asymptote, enter a list of the equations separated by a comma (e.g., $\mathrm{y}=20, \mathrm{y}=-7$).

Horizontal asymptotes: \qquad

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-intercepts separated by commas (i.e.: $(1,2),(3,4))$. If there is no x-intercept type in none .
x-intercepts: \qquad

Find the y-intercept: \qquad

Find the domain of $f(x)$:
Give your answer in interval notation.
3. (1 pt) Consider the function

$$
f(x)=\frac{8 x-7}{x^{2}+3 x-10}
$$

Find the vertical asymptote(s). If there is more than one vertical asymptote give a list of the x-values separated by commas.
$x=$ \qquad
If this function has a horizontal asymptote, give its y-value. If there is no horizontal asymptote, type in None .

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-values separated by commas.
$x=$
Find the y-intercept
$y=$ \qquad
4. (1 pt) Consider the function

$$
f(x)=\frac{x^{2}-4 x-32}{x^{2}+7 x}
$$

Find the vertical asymptote(s). If there is more than one vertical asymptote give a list of the x-values separated by commas.

$$
x=
$$

\qquad
If this function has a horizontal asymptote, give its y-value. If there is no horizontal asymptote, type in None .

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-values separated by commas.

$$
x=
$$

\qquad
Find the y-intercept. If there is no y-intercept type in None

$$
y=
$$

\qquad
5. (1 pt) Consider the function

$$
f(x)=\frac{2 x+4}{(8 x+5)(7 x+10)}
$$

Enter the equations of the vertical asymptotes. If there are no vertical asymptotes, enter none. If there is more than one vertical asymptote, enter a list of the equations separated by a comma (e.g., $x=20, x=-7$).

Vertical asymptotes: \qquad

Enter the equations of the horizontal asymptotes. If there are no horizontal asymptotes, enter none. If there is more than one horizontal asymptote, enter a list of the equations separated by a comma (e.g., $\mathrm{y}=20, \mathrm{y}=-7$).

Horizontal asymptotes:

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-intercepts separated by commas (i.e.: $(1,2),(3,4))$. If there is no x-intercept type in none .
x-intercepts:

Find the y-intercept:

Find the domain of $f(x)$:
Give your answer in interval notation.
6. (1 pt) Consider the function

$$
f(x)=\frac{x-5}{(-2 x+7)(5 x+2)}
$$

Enter the equations of the vertical asymptotes. If there are no vertical asymptotes, enter none. If there is more than one vertical asymptote, enter a list of the equations separated by a comma (e.g., $x=20, x=-7$).

Vertical asymptotes: \qquad

Enter the equations of the horizontal asymptotes. If there are no horizontal asymptotes, enter none. If there is more than one horizontal asymptote, enter a list of the equations separated by a comma (e.g., $\mathrm{y}=20, \mathrm{y}=-7$).

Horizontal asymptotes:
7. (1 pt) Consider the function

$$
f(x)=\frac{(-6 x+5)(9 x+3)}{(5 x-9)(x+9)}
$$

Enter the equations of the vertical asymptotes. If there are no vertical asymptotes, enter none. If there is more than one vertical asymptote, enter a list of the equations separated by a comma (e.g., $x=20, x=-7$).

Vertical asymptotes: \qquad

Enter the equations of the horizontal asymptotes. If there are no horizontal asymptotes, enter none. If there is more than one horizontal asymptote, enter a list of the equations separated by a comma (e.g., $\mathrm{y}=20, \mathrm{y}=-7$).

Horizontal asymptotes: \qquad

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-intercepts separated by commas (i.e.: $(1,2),(3,4))$. If there is no x-intercept type in none .
x-intercepts: \qquad

Find the y-intercept: \qquad

Find the domain of $f(x)$:

Give your answer in interval notation.

8. (1 pt) Consider the function

$$
f(x)=\frac{x^{2}+4 x-45}{x-5}
$$

Find the vertical asymptote(s). If there is more than one vertical asymptote give a list of the x-values separated by commas.If there is no vertical asymptote, type in None .

$$
x=
$$

\qquad
If this function has a horizontal asymptote, give its y-value. If there is no horizontal asymptote, type in None .

Find the x - intercept(s). If there is more than one x-intercept give a list of the x-values separated by commas.

```
\(x=\)
```

\qquad

```
    Find the \(y\)-intercept
    \(y=\)
```

\qquad
9. (1 pt) Consider the function

$$
f(x)=\frac{x^{2}-16}{x^{2}-25}
$$

Find the vertical asymptote(s). If there is more than one vertical asymptote give a list of the x-values separated by commas. $x=$ \qquad

If this function has a horizontal asymptote, give its y-value. If there is no horizontal asymptote, type in None .

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-values separated by commas.
$x=$
Find the y-intercept
$y=$
10. (1 pt) Consider the function

$$
f(x)=\frac{(7 x-1)(-x-4)}{(x+7)(7 x-1)}
$$

What is the vertical asymptote that is furthest left?
$x=$ \qquad

What is the vertical asymptote that is furthest right?
$x=$ \qquad

What is the horizontal asymptote?
$y=$
11. (1 pt) For the function

$$
f(x)=\frac{x-6}{(-2 x+3)(5 x+3)}
$$

What are the vertical asymptotes? Give a list of the x-values of the asymptotes separated by commas.
\qquad
=

What is the horizontal asymptote?
$y=$
12. (1 pt) Consider the function

$$
f(x)=\frac{4 x+7}{(7 x+2)(4 x+1)}
$$

Find the vertical asymptote(s). If there is more than one vertical asymptote give a list of the x-values separated by commas. If there are no vertical asymptotes, type in none .

$$
x=
$$

\qquad

If this function has a horizontal asymptote, give its y-value. If there is no horizontal asymptote, type in none .

$$
y=
$$

Find the x-intercept(s). If there is more than one x-intercept give a list of the x-intercepts separated by commas (i.e.: $(1,2),(3,4))$. If there is no x-intercept type in none .

Find the y-intercept

Find the domain. Write a comma separated list of all the x values that are not in the domain. If there are no such x, type none in the answer blank.
$x \neq$
13. (1 pt) For the function

$$
f(x)=\frac{(7 x-3)}{(-3 x-5)(4 x-3)}
$$

What are the vertical asymptotes? Give a list of the x-values of the asymptotes separated by commas.
$x=$ \qquad

What is the horizontal asymptote?
$y=$ \qquad

What are the x-intercepts? Give a list of the x-intercepts separated by commas (i.e.: $(1,2),(3,4))$. If there are no x-intercepts, type in none .
x-intercepts: \qquad
What is the y-intercept?
y-intercept: \qquad
14. (1 pt) Consider the function

$$
f(x)=\frac{x^{4}+20}{x^{2}-4 x+7}
$$

What are the vertical asymptotes? Give a list of the x-values of the asymptotes separated by commas. If there are none, enter None .
$x=$ \qquad

What is the horizontal asymptote? If there are none, enter None .
$y=$ \qquad

What are the x-intercepts? Give a list of the x-values of the x-intercepts separated by commas. If there are none, enter None .
$x=$ \qquad

What is the y-intercept? If there are none, enter None .
$y=$ \qquad
15. (1 pt) Let

$$
f(x)=\frac{8 x^{3}-18 x^{2}-207 x+162}{-4 x^{3}+3 x^{2}+196 x-147}
$$

The domain of the function $f(x)$ is:
Use interval notation to enter your answer.
The root(s) of $f(x)$ is/are: \qquad

Enter the root(s) as a comma-separated list.
$f(x)$ has one hole at the point: (\qquad
$f(x)$ has vertical asymptotes for the following x value(s):
Enter the asymptote(s) x-values as a comma-separated list.
$f(x)$ has a horizontal asymptote at $y=$ \qquad

