hw-18-techniques-of-graphing

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Identify graphing transformations from a graph
- Apply graphing transformations to a graph
- Identify graphing transformations from a function
- Apply graphing transformations to a function

Functions and symbols that WeBWorK understands.

$\underline{\text { Links to some useful WeBWorK pages for students }}$

1. (1 pt) Consider the function $y=f(x)$ drawn below:

(click on image to enlarge)
On a separate piece of paper, sketch an accurate graph of the function $y=-2 f(x)$. Which (if any) of the graphs below matches the graph you drew?

- A.

- B.
(click on image to enlarge)
- C.

(click on image to enlarge)
- D.
(click on image to enlarge)
- E.
(click on image to enlarge)
- F.

(click on image to enlarge)
- G. None of the above

2. (1 pt) Consider the graph of $f(x)$ given below:

(click on image to enlarge)
Find a possible formula for the transformations of $f(x)$ shown below:

(click on image to enlarge)
$y=$ \qquad
3. $(1 \mathrm{pt})$

Let $f(x)$ be given by the (large) graph to the right. On a piece of paper, graph and label each function listed below. Then, match each formula with its graph from the list A-I below.
? $y=\frac{1}{3} f(x)$
$? y=-2 f(x)$
$? y=-f(x-1)$
? $f(-x)$
? $y=2 f(x)$

A

D

G

B

E

H

C

F

I
(Click on a graph to enlarge it)

$$
y=f(x)
$$

4. (1 pt)

Match each formula with its graph.
$\square ? y=|x|-1.2$
$? y=|x|$
$? y=|x-3|+2.7$
$? y=|x|+2.5$
$? y=|x-1.2|$
$? y=|x+3.4|$

(Click on a graph to enlarge it)

5. (1 pt)

Let $f(x)$ be given by the (large) graph. On a piece of paper, graph and label each function listed below. Then, match each formula with its graph from the list A-F below.
$? y=-f(x-1)$
? $y=-2-f(x)$
? $y=f(-x)+3$
? $y=-f(-x)$
? $y=-f(x)$
? $y=f(-x)$

$$
y=f(x)
$$

(Click on a graph to enlarge it)
6. $(1 \mathrm{pt})$ Part I.

To obtain the graph of
$y=(x-7)^{3}+9(x-7)^{2}-6$
from the graph of
$y=x^{3}+9 x^{2}$
one needs to do the following transformations:

- A. horizontal shift 6 units right
- B. horizontal shift 7 units right
- C. vertical shift 7 units up
- D. vertical shift 6 units down
- E. horizontal shift 6 units left
- F. vertical shift 7 units down
- G. vertical shift 6 units up
- H. horizontal shift 7 units left

Note: select all transformations that apply
Part II.
To obtain the graph of
$y=(x+7)^{3}+9(x+7)^{2}-6$
from the graph of
$y=x^{3}+9 x^{2}$
one needs to do the following transformations:

- A. vertical shift 6 units up
- B. vertical shift 7 units down
- C. horizontal shift 7 units right
- D. vertical shift 7 units up
- E. horizontal shift 7 units left
- F. horizontal shift 6 units left
- G. horizontal shift 6 units right
- H. vertical shift 6 units down

Note: select all transformations that apply

7. (1 pt) Part I.

To obtain the graph of
$y=f(x+3)-5$
from the graph of
$y=f(x)$
one needs to do the following transformations:

- A. horizontal shift 5 units left
- B. horizontal shift 3 units right
- C. vertical shift 5 units down
- D. vertical shift 5 units up
- E. horizontal shift 5 units right
- F. vertical shift 3 units up
- G. vertical shift 3 units down
- H. horizontal shift 3 units left

Note: select all transformations that apply
Part II.
To obtain the graph of
$y=f(x+3)+5$
from the graph of
$y=f(x)$
one needs to do the following transformations:

- A. vertical shift 3 units up
- B. vertical shift 5 units down
- C. vertical shift 3 units down
- D. horizontal shift 5 units left
- E. horizontal shift 3 units left
- F. horizontal shift 3 units right
- G. vertical shift 5 units up
- H. horizontal shift 5 units right

Note: select all transformations that apply
Part III.
To obtain the graph of
$y=f(x-3)+5$
from the graph of
$y=f(x)$
one needs to do the following transformations:

- A. horizontal shift 3 units right
- B. horizontal shift 5 units left
- C. vertical shift 5 units up
- D. vertical shift 5 units down
- E. horizontal shift 3 units left
- F. horizontal shift 5 units right
- G. vertical shift 3 units down
- H. vertical shift 3 units up

Note: select all transformations that apply

8. $(1 \mathrm{pt})$ PART I.

Suppose we start with the graph of $y=x^{2}-3 x$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 2 units left
2. Vertical shift 6 units down

A formula for the transformed function is $g(x)=$ \qquad
PART II.
Suppose we start with the graph of $y=x^{2}-3 x$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 2 units left
2. Vertical shift 6 units down

A formula for the transformed function is $g(x)=$ \qquad
9. $(1 \mathrm{pt})$ PART I.

Suppose we start with the graph of $y=x^{2}+8 x-14$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 4 units right
2. Vertical shift 6 units down
3. Reflection with respect to x axis

A formula for the transformed function is $g(x)=$ \qquad

PART II.

Suppose we start with the graph of $y=x^{2}+8 x-14$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Reflection with respect to x axis
2. Horizontal shift 4 units right
3. Vertical shift 6 units down

A formula for the transformed function is $g(x)=$ \qquad

10. (1 pt) PART I.

Suppose we start with the graph of $y=2|x|$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 4 units right
2. Vertical shift 6 units up
3. Reflection with respect to x axis

A formula for the transformed function is $g(x)=$ PART II.
Suppose we start with the graph of $y=2|x|$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Reflection with respect to x axis
2. Horizontal shift 4 units right
3. Vertical shift 6 units up

A formula for the transformed function is $g(x)=$

11. $(1 \mathrm{pt})$ PART I.

Suppose we start with the graph of $y=x^{2}-8 x$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 5 units right
2. Vertical shift 7 units down
3. Reflection with respect to y axis

A formula for the transformed function is $g(x)=$
PART II.
Suppose we start with the graph of $y=x^{2}-8 x$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Reflection with respect to y axis
2. Horizontal shift 5 units right
3. Vertical shift 7 units down

A formula for the transformed function is $g(x)=$

12. (1 pt) PART I.

Suppose we start with the graph of $y=|x+7|$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 2 units left
2. Vertical shift 6 units down
3. Reflection with respect to y axis

A formula for the transformed function is $g(x)=$
PART II.
Suppose we start with the graph of $y=|x+7|$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Reflection with respect to y axis
2. Horizontal shift 2 units left
3. Vertical shift 6 units down

A formula for the transformed function is $g(x)=$

13. (1 pt) PART I.

Suppose we start with the graph of $y=\sqrt{x}$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 5 units left
2. Vertical shift 3 units down
3. Reflection with respect to x axis

A formula for the transformed function is $g(x)=$

PART II.
Suppose we start with the graph of $y=\sqrt{x}$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Reflection with respect to x axis
2. Horizontal shift 5 units left
3. Vertical shift 3 units down

A formula for the transformed function is $g(x)=$ \qquad

14. (1 pt) PART I.

Suppose we start with the graph of $y=\sqrt{x}$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Horizontal shift 6 units left
2. Vertical shift 4 units up
3. Reflection with respect to y axis

A formula for the transformed function is $g(x)=$ \qquad
PART II.
Suppose we start with the graph of $y=\sqrt{x}$ and apply the following sequence of transformations to obtain a graph of a new function $g(x)$

1. Reflection with respect to y axis
2. Horizontal shift 6 units left
3. Vertical shift 4 units up

A formula for the transformed function is $g(x)=$ \qquad
15. (1 pt)

The graph of $f(x)=|x|$ is sketched in black and it had undergone a series of transformations to graphs of functions
f_{1} sketched in green,
f_{2} sketched in blue, and
f_{3} sketched in red.
That is, the sequence of transformation is as follows:
$f \rightarrow f_{1} \rightarrow f_{2} \rightarrow f_{3}$.
Find a formula for the function $f_{1}(x)$
$f_{1}(x)=$ \qquad
Find a formula for the function $f_{2}(x)$
$f_{2}(x)=$ \qquad
Find a formula for the function $f_{3}(x)$
$f_{3}(x)=$ \qquad
16. $(1 \mathrm{pt})$

The graph of $f(x)=x^{3}$ is sketched in black and it had undergone a series of transformations to graphs of functions f_{1} sketched in green,
f_{2} sketched in blue, and
f_{3} sketched in red.
That is, the sequence of transformation is as follows:
$f \rightarrow f_{1} \rightarrow f_{2} \rightarrow f_{3}$.
Find a formula for the function $f_{1}(x)$
$f_{1}(x)=$ \qquad
Find a formula for the function $f_{2}(x)$
$f_{2}(x)=$ \qquad
Find a formula for the function $f_{3}(x)$
$f_{3}(x)=$ \qquad
17. (1 pt)

The graph of $f(x)=x^{2}$ is sketched in black and it had undergone a series of transformations to graphs of functions f_{1} sketched in green, f_{2} sketched in blue, and f_{3} sketched in red.
That is, the sequence of transformation is as follows:
$f \rightarrow f_{1} \rightarrow f_{2} \rightarrow f_{3}$.

Find a formula for the function $f_{1}(x)$
$f_{1}(x)=$ \qquad

Find a formula for the function $f_{2}(x)$
$f_{2}(x)=$ \qquad
Find a formula for the function $f_{3}(x)$
$f_{3}(x)=$ \qquad
18. $(1 \mathrm{pt})$

The graph of $f(x)=\sqrt{x}$ is sketched in black and it had undergone a series of transformations to graphs of functions f_{1} sketched in green,
f_{2} sketched in blue, and f_{3} sketched in red.
That is, the sequence of transformation is as follows: $f \rightarrow f_{1} \rightarrow f_{2} \rightarrow f_{3}$.

Find a formula for the function $f_{1}(x)$
$f_{1}(x)=$ \qquad
Find a formula for the function $f_{2}(x)$
$f_{2}(x)=$ \qquad
Find a formula for the function $f_{3}(x)$
$f_{3}(x)=$ \qquad

