hw-04a-review-of-complex-numbers

Due: 12/12/2015 at 06:00am EST.

Students will be able to:

- Add and Subtract Complex Numbers
- Multiply and Divide Complex Numbers

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. $(1 \mathrm{pt})$ Evaluate the expression $(9+4 i)+(7+6 i)$ and write the result in the form $a+b i$.

The sum is \qquad
2. (1 pt) Evaluate the expression $(-5+6 i)+(-4+6 i)$ and write the result in the form $a+b i$.

The real number a equals \qquad
The real number b equals \qquad
3. $(1 \mathrm{pt})$ Evaluate the expression $(-6-4 i)-(-8-4 i)$ and write the result in the form $a+b i$.

The real number a equals \qquad
The real number b equals \qquad
4. (1 pt) Evaluate the expression $(-6+2 i)-(6+7 i)$ and write the result in the form $a+b i$.

The difference is \qquad
5. (1 pt) Evaluate the expression $(9-7 i)(-8-5 i)$ and write the result in the form $a+b i$.

The product is \qquad
6. (1 pt) Write the following numbers in $a+b i$ form:
(a) $(3+i)(5+5 i)(-3+3 i)=$ \qquad $+$ \qquad i,
(b) $\left((-4-4 i)^{2}-3\right) i=$ \qquad $+$ - i.
7. (1 pt) Complete the following equations. Your answers will be algebraic expressions.
$(a+b i)(a-b i)=$
$(a+b i)^{2}-(a-b i)^{2}=+\ldots+\ldots i$
Hint: You can use some of the results in the preceding problem and the discussion of complex numbers.
8. (1 pt) Complete the following equation. Your answers will be algebraic expressions.
$(a+b i)^{3}=$ \qquad $+$ \qquad i

Hint: Think of i as an ordinary variable and then replace i^{2} with -1 .
9. (1 pt) For some practice working with complex numbers: Calculate
$(4-6 i)+(2-5 i)=$ \qquad $(4-6 i)-(2-5 i)=$ \qquad $(4-6 i)(2-5 i)=$ \qquad
The complex conjugate of $(1+i)$ is $(1-i)$. In general to obtain the complex conjugate reverse the sign of the imaginary part.
(Geometrically this corresponds to finding the "mirror image" point in the complex plane by reflecting through the x-axis. The complex conjugate of a complex number z is written with a bar over it: \bar{z} and read as "z bar".

Notice that if $z=a+i b$, then
$(z)(\bar{z})=|z|^{2}=a^{2}+b^{2}$
which is also the square of the distance of the point z from the origin. (Plot z as a point in the "complex" plane in order to see this.)

If $z=4-6 i$ then $\bar{z}=$ \qquad and $|z|=$ \qquad
You can use this to simplify complex fractions. Multiply the numerator and denominator by the complex conjugate of the denominator to make the denominator real.
$\frac{4-6 i}{2-5 i}=$ \qquad $+i$ \qquad
Two convenient functions to know about pick out the real and imaginary parts of a complex number.
$\operatorname{Re}(a+i b)=a$ (the real part (coordinate) of the complex number), and
$\operatorname{Im}(a+i b)=b$ (the imaginary part (coordinate) of the complex number. Re and Im are linear functions - now that you know about linear behavior you may start noticing it often.
10. $(1 \mathrm{pt})$ Evaluate the expression

$$
\frac{8-7 i}{-8-6 i}
$$

and write the result in the form $a+b i$.

The quotient is \qquad .
11. (1 pt) Write the following numbers in $a+b i$ form:
(a) $\left(\frac{2+i}{5 i-(-5-2 i)}\right)^{2}=$ \qquad i,
(b) $(i)^{2}(-5+i)^{2}=$ \qquad $+$ \qquad i.
12. (1 pt) Calculate the following:
(a) $i^{3}=$
(b) $i^{4}=$
(c) $i^{5}=$
(d) $i^{6}=$ \qquad
(e) $i^{59}=$ \qquad
(f) $i^{0}=$
(g) $i^{-1}=$
(h) $i^{-2}=$
(i) $i^{-3}=$
(j) $i^{-89}=_$.
13. $(1 \mathrm{pt})$ Enter the complex coordinates of the following points:

A:
——,
B:
C: \qquad

