31 Polynomials with Complex Zeros

Due: 12/15/2015 at 06:00am EST.

Students will be able to:

- Use Fundamental Theorem of Algebra to recover a formula for a polynomial that has given real and complex zeros
- Find all roots of a polynomial with a possible hint of the possible zeros

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Given that f(x) is a cubic function with zeros at -1 and -3i-1, find an equation for f(x) given that f(0) = -5.

f(x) =_____

2. (1 pt) Find a polynomial with integer coefficients, with leading coefficient 1, degree 5, zeros *i* and 1 - i, and passing through the origin.

 $P(x) = _$

3. (1 pt) Find an equation for f(x), the polynomial of smallest degree with real coefficients such that f(x) bounces off of the *x*-axis at 4, bounces off of the *x*-axis at 3, has complex roots of 4 - i and 1 - 5i and passes through the point (0, -51).

 $f(x) = \underline{\qquad}.$

4. (1 pt)

A degree 4 polynomial P(x) with integer coefficients has zeros 3i and 2, with 2 being a zero of multiplicity 2. Moreover, the coefficient of x^4 is 1. Find the polynomial.

P(x) =_____

5. (1 pt)

 $f(x) = x^4 + 8x^3 - 26x^2 - 248x + 265$

Given that -7 - 2i is a root of f(x), find all of the roots, giving real roots in increasing order, followed by complex roots with increasing imaginary parts.

The roots are: ____

6. (1 pt) The polynomial

 $f(x) = 10x^3 - 3x^2 + 90x - 27$

has 3i as a root. Give all of the roots of f in a comma-separated list, including the given one. Roots: ______

To get a better look at the graph, you can click on it. The curve above is the graph of a degree 3 polynomial. It goes through the point (5, -50.4). Find the polynomial. f(x) = ______

8. (1 pt) Give all of the zeros of $P(x) = x^2 + 16$ as a comma separated list.

9. (1 pt) A degree 4 polynomial with integer coefficients has zeros -2 - 4i and 1, with 1 a zero of multiplicity 2. If the coefficient of x^4 is 1, then the polynomial is ______.

10. (1 pt) Find a degree 3 polynomial with coefficient of x^3 equal to 1 and zeros -1, -3i and 3i. Your answer is ______.

11. (1 pt) The zeros of $P(x) = x^3 + 9x$ are $x_1 =$ _____ with multiplicity _____; $x_2 =$ _____+ ____ *i* with negative imaginary part, its multiplicity is _____; and $x_3 =$ ____+ ____ *i* with positive imaginary part, its multiplicity is _____.

12. (1 pt) The zeros of $P(x) = x^3 + 3x^2 + 4x + 12$ are $x_1 =$ _____ with multiplicity _____; $x_2 =$ ____+ ____ *i* with negative imaginary part, its multiplicity is _____; and $x_3 =$ ___+ ____ *i* with positive imaginary part, its multiplicity is _____.

13. (1 pt) The zeros of $P(x) = x^5 + 18x^3 + 81x$ are $x_1 =$ _____ with multiplicity _____;

 $x_2 =$ _____*i* with negative imaginary part,

its multiplicity is ____; and

 $x_3 =$ _____*i* with positive imaginary part,

its multiplicity is _____.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America