31 Polynomials with Complex Zeros

Due:
 12/15/2015 at 06:00am EST.

Students will be able to:

- Use Fundamental Theorem of Algebra to recover a formula for a polynomial that has given real and complex zeros
- Find all roots of a polynomial with a possible hint of the possible zeros

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Given that $f(x)$ is a cubic function with zeros at -1 and $-3 i-1$, find an equation for $f(x)$ given that $f(0)=-5$.
$f(x)=$ \qquad
2. (1 pt) Find a polynomial with integer coefficients, with leading coefficient 1 , degree 5 , zeros i and $1-i$, and passing through the origin.
$P(x)=$
3. (1 pt) Find an equation for $f(x)$, the polynomial of smallest degree with real coefficients such that $f(x)$ bounces off of the x-axis at 4 , bounces off of the x-axis at 3 , has complex roots of $4-i$ and $1-5 i$ and passes through the point $(0,-51)$.
$f(x)=$ \qquad
4. (1 pt)

A degree 4 polynomial $P(x)$ with integer coefficients has zeros $3 i$ and 2 , with 2 being a zero of multiplicity 2 . Moreover, the coefficient of x^{4} is 1 . Find the polynomial.
$P(x)=$ \qquad

5. $(1 \mathrm{pt})$

$$
f(x)=x^{4}+8 x^{3}-26 x^{2}-248 x+265
$$

Given that $-7-2 i$ is a root of $f(x)$, find all of the roots, giving real roots in increasing order, followed by complex roots with increasing imaginary parts.

The roots are: \qquad
6. (1 pt) The polynomial

$$
f(x)=10 x^{3}-3 x^{2}+90 x-27
$$

has $3 i$ as a root. Give all of the roots of f in a comma-separated list, including the given one.
Roots:

To get a better look at the graph, you can click on it.
The curve above is the graph of a degree 3 polynomial. It goes through the point $(5,-50.4)$. Find the polynomial. $f(x)=$
8. (1 pt) Give all of the zeros of $P(x)=x^{2}+16$ as a comma separated list.
9. (1 pt) A degree 4 polynomial with integer coefficients has zeros $-2-4 i$ and 1 , with 1 a zero of multiplicity 2 . If the coefficient of x^{4} is 1 , then the polynomial is \qquad
10. $(1 \mathrm{pt})$ Find a degree 3 polynomial with coefficient of x^{3} equal to 1 and zeros $-1,-3 i$ and $3 i$.
Your answer is \qquad
11. (1 pt) The zeros of $P(x)=x^{3}+9 x$ are
$x_{1}=$ \qquad with multiplicity \qquad -;
$x_{2}=$ \qquad $+$ i with negative imaginary part,
its multiplicity is \qquad ; and
$x_{3}=_+$ i with positive imaginary part,
its multiplicity is —.
12. (1 pt) The zeros of $P(x)=x^{3}+3 x^{2}+4 x+12$ are
$x_{1}=$ \qquad with multiplicity \qquad
$x_{2}=$ \qquad $+$ i with negative imaginary part,
its multiplicity is \qquad ; and
$x_{3}={ }^{+}+$ i with positive imaginary part, its multiplicity is \qquad
13. (1 pt) The zeros of $P(x)=x^{5}+18 x^{3}+81 x$ are
$x_{1}=$ \qquad with multiplicity \qquad ;
$x_{2}=$ \qquad $+\quad i$ i with negative imaginary part,
its multiplicity is \qquad ; and
$x_{3}=$ \qquad $+$ i with positive imaginary part, its multiplicity is \qquad

Generated by © CeBWorK, http://webwork.maa.org, Mathematical Association of America

