hw-13-variation-sci-formulas

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Solve Direct Variation Application Problems
- Solve Inverse Variation Application problems
- Solve Joint Variation Application problems

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Suppose r varies directly with t and that $r=30$ when $t=6$. What is the value of r when $t=12$?
$r=$ \qquad
2. (1 pt) Suppose p varies directly as the square of q. If $p=3$ when $q=8$, what is p if q is 10 ?
$p=$ \qquad
3. (1 pt) State sales tax y is directly proportional to retail price x. An item that sells for 146 dollars has a sales tax of 14.42 dollars. Find a mathematical model that gives the amount of sales tax y in terms of the retail price x.
Your answer is $y=$
What is the sales tax on a 270 dollars purchase.
Your answer is:
4. (1 pt) Suppose p varies directly with q and that $p=56$ when $q=8$. What is the value of p when $q=2$?
$p=$ \qquad
5. $(1 \mathrm{pt})$ At 3:00 PM a man 143 cm tall casts a shadow 148 cm long. At the same time, a tall building nearby casts a shadow 160 m long. How tall is the building?
Give your answer in meters. (You may need the fact that 100 $\mathrm{cm}=1 \mathrm{~m}$.)
6. (1 pt) Suppose z varies inversely with t and that $z=30$ when $t=7$. What is the value of z when $t=6$? $z=$ \qquad
7. (1 pt) Suppose f varies inversely with g and that $f=40$ when $g=4$. What is the value of f when $g=10$?
$f=$ \qquad
8. (1 pt) Suppose p varies jointly as the cube root of q and the cube of r. If $p=15$ when $q=8$ and $r=15$, what is p if $q=5$ and $r=1$?
$p=$ \qquad
9. (1 pt) Suppose z varies directly with x and inversely with the square of y. If $z=12$ when $x=3$ and $y=5$, what is z when $x=12$ and $y=8$?
$z=$ \qquad
10. (1 pt) If p varies jointly as t and r and inversely as q, then find an equation for p if $p=-5$ when $t=-1, r=-2$, and $q=-1$.
$p=$ \qquad
11. (1 pt) If q varies jointly as p and the cube of t and inversely as r, then find an equation for q if $q=-8$ when $t=1$, $p=2$, and $r=7$.
$q=$ \qquad
12. (1 pt) Suppose z varies directly with y and directly with the cube of x. If $z=648$ when $x=3$ and $y=8$, what is z when $x=7$ and $y=5$?
$z=$ \qquad
13. (1 pt) If t varies jointly as q and p and inversely as r, then find an equation for t if $t=4$ when $q=8, p=9$, and $r=2$.
$t=$ \qquad
14. (1 pt) Suppose p varies jointly as the cube of q and the cube root of r. If $p=14$ when $q=10$ and $r=1$, what is p if $q=6$ and $r=14$?
$p=$
15. (1 pt) The stopping distance d of an automobile is directly proportional to the square of its speed v. A car required 75 feet to stop when its speed was 70 miles per hour. Find a mathematical model that gives the stopping distance d in terms of its speed v.
Your answer is $d=$ \qquad
Estimate the stopping distance if the brakes are applied when the car is traveling at 50 miles per hour.
Your answer is: \qquad
 For each power function, choose (by letter) the graph which
most closely resembles the graph of that function. You may always assume that the constant of variation k is positive.
Warning: You have only 4 attempts at this problem so make them count!
$y=k x^{8} _y=k x^{70}$
$y=k x^{\frac{1}{4}}-y=\frac{k}{x^{2.5}}-$
$y=k x^{.55} _y=k x^{\frac{4}{7}} _$
