## 29 Polynomial Inequalities. Rational Inequalities.

## Due: 12/14/2015 at 06:00am EST.

Students will be able to:

- Use zeros of polynomials and Intermediate Value Theorem to solve polynomial inequalities
- Use Intermediate Value Theorem to solve rational inequalities

## Functions and symbols that WeBWorK understands.

## Links to some useful WeBWorK pages for students

**1.** (1 pt) Solve the following inequality. Express the answer in interval notation.

$$2x^2 + x \ge 7$$

Answer: \_\_\_\_

**2.** (1 pt) Solve the following inequality. Express the answer in interval notation.

$$(x-10)(x-19) > 0$$

Answer: \_\_\_\_

**3.** (1 pt) Solve the following inequalities. Enter the answers in interval notation.

(a)  $x^2 + 7x - 8 \le 0$ Answer: \_\_\_\_\_\_ (b)  $9x^2 + x + 8 > 0$ Answer: \_\_\_\_\_\_

**4.** (1 pt) Solve the following inequality. Express the answer in interval notation.

 $x^4 > 4x^2$ 

Answer: \_\_\_\_

**5.** (1 pt) Solve the following inequalities. Express the answers in interval notation.

Suggestion: First answer part (a) using techniques from class and/or the text. Then, notice that parts (b)-(e) are modifications of part (a). Think about how these modifications affect the problem. Then solve parts (b)-(e) based on your answer to part (a). If you are not able to see the connections, you can always work the entire method.



(e) 
$$\frac{(x+16)^{10,001}}{(x^2-1)^{10,003}} \ge 0$$
  
Answer:

**6.** (1 pt) Solve the following inequality. Enter the answer in interval notation.

$$\frac{x}{x-7} > -2$$

Answer: \_

**7.** (1 pt) Solve the following inequality. Enter the answer in interval notation.

$$\frac{(x-20)^2(x+1)^3}{(x-28)^4} > 0$$

Answer: \_\_\_\_

**8.** (1 pt) Solve the following inequality. Enter the answer in interval notation.

$$\frac{x-8}{x-5} \le -8$$

Answer: \_\_\_\_

**9.** (1 pt) Solve the following inequality. Enter the answer in interval notation.

$$\frac{3-x}{x-10} \ge 0$$

Answer: \_\_\_\_

**10.** (1 pt) Solve the inequality

$$\frac{(x-7)^4(x-40)^{13}}{x-1316} \ge 0$$

Give your answer in interval notation.

*x* ∈ \_\_\_\_\_

Note: Enter your answer without spaces. If you need  $-\inf$ , type -inf. If you need inf, type inf. Remember that punctuation is important.

11. (1 pt) Solve the following inequality. Write the answer in interval notation. Note: If the answer includes more than one interval write the intervals separated by the "union" symbol, U. If needed enter  $\infty$  as *infinity* and  $-\infty$  as *-infinity*.

$$\frac{1}{x-3} \le \frac{1}{x-4}$$

Answer: \_\_\_\_\_

12. (1 pt) Solve the following inequality. Write the answer in interval notation. If the answer involves more than one interval, write the intervals separated by the "union" symbol, U. If needed enter  $-\infty$  as - infinity and  $\infty$  as infinity.

$$\frac{6}{x-1} - \frac{6}{x} \ge 1$$

Answer: \_\_\_\_\_

**13.** (1 pt) Consider the inequality

$$\frac{x-5}{x^2(x+1)} > 0$$

The solution of this inequality consists of one or more of the following intervals:  $(-\infty,A)$ , (A,B), (B,C), and  $(C,\infty)$  where A < B < C.

- Find *A* \_\_\_\_\_
- Find *B* \_\_\_\_\_
- Find *C* \_\_\_\_\_

For each interval, answer YES or NO to whether the interval is included in the solution.

- (*−∞*,*A*) \_\_\_\_\_
- (A,B) \_\_\_\_\_

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

 $\begin{array}{c} (B,C) \\ (C,\infty) \end{array}$ 

14. (1 pt) Consider the inequality

$$\frac{x+6}{x+7} < -3$$

The solution of this inequality consists one or more of the following intervals:  $(-\infty, A)$ , (A, B), and  $(B, \infty)$  where A < B.

Find *A* \_\_\_\_\_

Find *B* \_\_\_\_\_

For each interval, answer YES or NO to whether the interval is included in the solution.

$$\begin{array}{ccc} (-\infty, A) & \underline{\qquad} \\ (A, B) & \underline{\qquad} \\ (B, \infty) & \underline{\qquad} \end{array}$$