hw-19-mathematical-model

Due: 12/13/2015 at 06:00am EST.

Students will be able to:

- Create Mathematical Models as a Function
- Evaluate Mathematical Model as a Function

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. $(1 \mathrm{pt})$ We consider a rectangular field that has perimeter of 404 yards.
2. Determine formula for the area of the field, A, in terms of the length of the field, x.
$A(x)=$
3. What is the domain of the function A ?

Domain of $A(x)$ is
Note: use interval notation for the domain
3. If $x=198$, what is A ?
$A(198)=$
4. If $A(x)=8601$, what is x ?
$x=$ \qquad
2. (1 pt) Let $P=(x, y)$ be a point on graph of $y=x^{2}-15$.
(a) Express the distance d from P to the point $(1,-2)$ as a function of x.
$d(x)=$ \qquad
(b) What is d if $x=0$
$d(0)=$ \qquad
(c) What is d if $x=3$
$d(3)=$ \qquad
3. (1 pt) An open box with a square base is to be made from a square piece of cardboard 27 inches on a side by cutting out a square from each corner and turning up the sides. See the figure on page 263 of our text.
(a) Express the volume V of the box as a function of the length x of the side of the square cut from each corner.
$V(x)=$ \qquad
(b) What is the volume if a 9.4 -inch square is cut out?
$V(9.4)=$ \qquad
(c) What is the volume if a 11-inch square is cut out?
$V(11)=$
(d) What is domain of $V(x)$?

Domain of $V(x)$ is \qquad
Note: use interval notation for the domain
4. (1 pt) A rectangle has one corner in quadrant I on the graph of $y=64-x^{2}$, another at the origin, a third on the positive y-axis, and the fourth on the positive x-axis. See the figure below

(1) Width of rectangle in terms of x is \qquad
(2) Height of rectangle in terms of x is \qquad
(3) Express the area A of the rectangle as a function of x.

Area $A(x)=$ \qquad
(4) What is the domain of A ?

Domain of A is \qquad
Note: use interval notation for the domain
(5) Graph $A=A(x)$. For what value of x is A the largest?

Value of x that makes $A(x)$ largest is $x \approx$ \qquad
5. (1 pt) A rectangle is inscribed in a semicircle of radius $r=3$. See the figure below

Let $P=(x, y)$ be the point in quadrant I that is a vertex of the rectangle and is on the semicircle of radius $r=3$ shown above.
(1) Express the area A of the rectangle as a function of x. $A(x)=$ \qquad
(2) Express the perimeter P of the rectangle as a function of x.
$P(x)=$ \qquad
(3) Graph $A=A(x)$. For what value of x is A the largest? $x \approx$
(4) Graph $P=P(x)$. For what value of x is P the largest?
$x \approx$ \qquad
6. $(1 \mathrm{pt})$ A rectangle is inscribed in a circle of radius $r=4$. See the figure below

Let $P=(x, y)$ be the point in quadrant I that is a vertex of the rectangle and is on the circle of radius $r=4$ shown above.
(1) Express the area A of the rectangle as a function of x. $A(x)=$ \qquad
(2) Express the perimeter P of the rectangle as a function of x.
$P(x)=$ \qquad
(3) Graph $A=A(x)$. For what value of x is A the largest ?
$x \approx$
(4) Graph $P=P(x)$. For what value of x is P the largest? $x \approx$ \qquad

