26 Graphs of Polynomials

Due:

12/14/2015 at 06:00am EST.
Students will be able to:

- Find real zeros of polynomials and identify their multiplicities
- Determine end behavior of the graph of polynomial
- Determine if the graph of polynomial is above or below the x-axis to either side of the real zero
- Produce a possible formula for the polynomial based on the graph

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Given $f(x)=-7(x+5)^{2}(x+4)^{3}(x-5)^{6}$, find the roots in increasing order.
The roots are \qquad and \qquad
To the left of the first root, is the graph of $f(x)$ above or below the x-axis? Answer above or below:
Between the first two roots, is the graph of $f(x)$ above or below the x-axis? Answer above or below:
Between the last two roots, is the graph of $f(x)$ above or below the x-axis? Answer above or below:
After the last root, is the graph of $f(x)$ above or below the x axis? Answer above or below: \qquad
2. (1 pt)

To get a better look at the graph, you can click on it.
The curve above is the graph of a degree 3 polynomial. It goes through the point $(5,-4.2)$. Find the polynomial.
$f(x)=$
3. (1 pt) The following is an approximate graph of a 3rd degree polynomial with leading coefficient ± 1 :

Use the information about the x - intercepts and end behavior to come up with a formula for the polynomial.
$p(x)=$ \qquad
4. (1 pt) The following is an approximate graph of a 3rd degree polynomial with leading coefficient ± 1 :

Use the information about the x - intercepts and end behavior to come up with a formula for the polynomial.
$p(x)=$ \qquad
5. (1 pt) The following is an approximate graph of a 4th degree polynomial with leading coefficient ± 1 :

Use the information about the x - intercepts and end behavior to come up with a formula for the polynomial.

$$
p(x)=
$$

\qquad
6. (1 pt) The following is an approximate graph of a 4th degree polynomial with leading coefficient ± 1 :

Use the information about the x - intercepts and end behavior to come up with a formula for the polynomial.
$p(x)=$ \qquad
7. (1 pt) The following is an approximate graph of a 3rd degree polynomial with leading coefficient ± 1 :

Use the information about the x - intercepts and end behavior to come up with a formula for the polynomial.
$p(x)=$ \qquad
8. (1 pt) The following is an approximate graph of a 3rd degree polynomial with leading coefficient ± 1 :

Use the information about the x-intercepts and end behavior to come up with a formula for the polynomial.
$p(x)=$ \qquad
9. $(1 \mathrm{pt})$ In this problem we consider the following polynomial
$f(x)=-2(x+4)(x+2)(x-6)$
Find the y-intercept of the graph of $y=f(x)$
$y=$ \qquad
Find the x-intercepts of the graph of $y=f(x)$
$x=$
Determine the zeros of polynomial $f(x)$
Zeros are $x=$ \qquad
Determine the multiplicities of the zeros you entered above Multiplicities are \qquad

Find the degree of the polynomial $f(x)$
Degree is
Find the leading term of the polynomial $f(x)$
Leading term is
Determine the intervals where the graph of $f(x)$ is above x-axis.
The graph is above x-axis on open intervals
Note: if the answer is an empty set, enter it as
Determine the intervals where the graph of $f(x)$ is below x-axis.
The graph is below x-axis on open intervals
Note: if the answer is an empty set, enter it as
Left end behavior: as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
Right end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$ \qquad
Find the solution set of
$-2(x+4)(x+2)(x-6)>0$
Solution set is
Note: if the answer is an empty set, enter it as
Find the solution set of
$-2(x+4)(x+2)(x-6)<0$
Solution set is
Note: if the answer is an empty set, enter it as
Find the solution set of
$-2(x+4)(x+2)(x-6) \geq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$

Find the solution set of
$-2(x+4)(x+2)(x-6) \leq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$
10. (1 pt) In this problem we consider the following polynomial
$f(x)=2(x+1)(x+3)^{2}(x-8)^{3}$
Find the y-intercept of the graph of $y=f(x)$
$y=$
Find the x-intercepts of the graph of $y=f(x)$
$x=$
———
Determine the zeros of polynomial $f(x)$
Zeros are $x=$ \qquad
Determine the multiplicities of the zeros you entered above
Multiplicities are \qquad
Find the degree of the polynomial $f(x)$
Degree is \qquad
Find the leading term of the polynomial $f(x)$
Leading term is \qquad
Determine the intervals where the graph of $f(x)$ is above x-axis.
The graph is above x-axis on open intervals \qquad
Note: if the answer is an empty set, enter it as

Determine the intervals where the graph of $f(x)$ is below x-axis.
The graph is below x-axis on open intervals
Note: if the answer is an empty set, enter it as
Left end behavior: as $x \rightarrow-\infty, f(x) \rightarrow$
Right end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$ \qquad
Find the solution set of
$2(x+1)(x+3)^{2}(x-8)^{3}>0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as
Find the solution set of
$2(x+1)(x+3)^{2}(x-8)^{3}<0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as Find the solution set of
$2(x+1)(x+3)^{2}(x-8)^{3} \geq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$

Find the solution set of
$2(x+1)(x+3)^{2}(x-8)^{3} \leq 0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$
11. (1 pt) In this problem we consider the following polynomial
$f(x)=-4(x-7)^{2}(x-8)^{2}(x+8)^{2}$
Find the y-intercept of the graph of $y=f(x)$
$y=$ \qquad
Find the x-intercepts of the graph of $y=f(x)$
$x=$
Determine the zeros of polynomial $f(x)$
Zeros are $x=$ \qquad
Determine the multiplicities of the zeros you entered above Multiplicities are

Find the degree of the polynomial $f(x)$
Degree is
Find the leading term of the polynomial $f(x)$
Leading term is \qquad
Determine the intervals where the graph of $f(x)$ is above x-axis.
The graph is above x-axis on open intervals \qquad
Note: if the answer is an empty set, enter it as
Determine the intervals where the graph of $f(x)$ is below x-axis.
The graph is below x-axis on open intervals
Note: if the answer is an empty set, enter it as
Left end behavior: as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
Right end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$ \qquad

Find the solution set of
$-4(x-7)^{2}(x-8)^{2}(x+8)^{2}>0$
Solution set is
Note: if the answer is an empty set, enter it as
Find the solution set of
$-4(x-7)^{2}(x-8)^{2}(x+8)^{2}<0$
Solution set is
Note: if the answer is an empty set, enter it as
Find the solution set of
$-4(x-7)^{2}(x-8)^{2}(x+8)^{2} \geq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points,
enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$
Find the solution set of
$-4(x-7)^{2}(x-8)^{2}(x+8)^{2} \leq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$
12. (1 pt) In this problem we consider the following polynomial
$f(x)=8 x(x-4)(x+3)(x-5)$
Find the y-intercept of the graph of $y=f(x)$
$y=$
Find the x-intercepts of the graph of $y=f(x)$
$x=$
Determine the zeros of polynomial $f(x)$
Zeros are $x=$
Determine the multiplicities of the zeros you entered above
Multiplicities are
Find the degree of the polynomial $f(x)$
Degree is
Find the leading term of the polynomial $f(x)$
Leading term is
Determine the intervals where the graph of $f(x)$ is above x-axis.
The graph is above x-axis on open intervals
Note: if the answer is an empty set, enter it as
Determine the intervals where the graph of $f(x)$ is below x-axis.
The graph is below x-axis on open intervals
Note: if the answer is an empty set, enter it as
Left end behavior: as $x \rightarrow-\infty, f(x) \rightarrow$
Right end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$
\qquad
Find the solution set of
$8 x(x-4)(x+3)(x-5)>0$
Solution set is
Note: if the answer is an empty set, enter it as
Find the solution set of
$8 x(x-4)(x+3)(x-5)<0$
Solution set is
Note: if the answer is an empty set, enter it as

Find the solution set of
$8 x(x-4)(x+3)(x-5) \geq 0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$

Find the solution set of
$8 x(x-4)(x+3)(x-5) \leq 0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$
13. $(1 \mathrm{pt})$ In this problem we consider the following polynomial
$f(x)=-8 x^{2}(x+3)^{3}(x-5)(x-8)^{2}$
Find the y-intercept of the graph of $y=f(x)$
$y=$
Find the x-intercepts of the graph of $y=f(x)$
$x=$
-
Determine the zeros of polynomial $f(x)$
Zeros are $x=$ \qquad
Determine the multiplicities of the zeros you entered above
Multiplicities are \qquad
Find the degree of the polynomial $f(x)$
Degree is \qquad
Find the leading term of the polynomial $f(x)$
Leading term is
Determine the intervals where the graph of $f(x)$ is above x-axis.
The graph is above x-axis on open intervals
Note: if the answer is an empty set, enter it as
Determine the intervals where the graph of $f(x)$ is below x-axis.
The graph is below x-axis on open intervals
Note: if the answer is an empty set, enter it as
Left end behavior: as $x \rightarrow-\infty, f(x) \rightarrow$
Right end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$
\qquad
Find the solution set of
$-8 x^{2}(x+3)^{3}(x-5)(x-8)^{2}>0$
Solution set is
Note: if the answer is an empty set, enter it as
Find the solution set of
$-8 x^{2}(x+3)^{3}(x-5)(x-8)^{2}<0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as
Find the solution set of
$-8 x^{2}(x+3)^{3}(x-5)(x-8)^{2} \geq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$

Find the solution set of
$-8 x^{2}(x+3)^{3}(x-5)(x-8)^{2} \leq 0$

Solution set is \qquad
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1] U [0,1] U 2, 3
14. (1 pt) In this problem we consider the following polynomial
$f(x)=-4 x^{2}(x+6)^{2}(x-2)^{3}(x+5)^{2}$
Find the y-intercept of the graph of $y=f(x)$
$y=$
Find the x-intercepts of the graph of $y=f(x)$
$x=$ \qquad
Determine the zeros of polynomial $f(x)$
Zeros are $x=$ \qquad
Determine the multiplicities of the zeros you entered above
Multiplicities are \qquad
Find the degree of the polynomial $f(x)$
Degree is
Find the leading term of the polynomial $f(x)$
Leading term is
Determine the intervals where the graph of $f(x)$ is above x-axis.
The graph is above x-axis on open intervals
Note: if the answer is an empty set, enter it as
Determine the intervals where the graph of $f(x)$ is below x-axis.

The graph is below x-axis on open intervals
Note: if the answer is an empty set, enter it as
Left end behavior: as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
Right end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$ \qquad
Find the solution set of
$-4 x^{2}(x+6)^{2}(x-2)^{3}(x+5)^{2}>0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as Find the solution set of
$-4 x^{2}(x+6)^{2}(x-2)^{3}(x+5)^{2}<0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as Find the solution set of $-4 x^{2}(x+6)^{2}(x-2)^{3}(x+5)^{2} \geq 0$
Solution set is
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$

Find the solution set of
$-4 x^{2}(x+6)^{2}(x-2)^{3}(x+5)^{2} \leq 0$
Solution set is \qquad
Note: if the answer is an empty set, enter it as
Note: if the solution set contains intervals and several points, enter it similar to (-inf, -1$] \mathrm{U}[0,1] \mathrm{U} 2,3$

