36 Properties of Logarithms

Due:

12/15/2015 at 06:00am EST.

Students will be able to:

- Use properties of logarithms to expand logarithmic expressions into a sum or difference of logarithms
- Use properties of logarithms to collapse logarithmic expressions into a single logarithm

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $0<x<1$.
$\ln \left(x^{5} \sqrt{1-x}\right)=$ \qquad
2. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $x>0$.
$\ln \left(x \sqrt{1+x^{3}}\right)=$ \qquad
3. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $x>2$.
$\log \left(\frac{x^{3} \sqrt{x+1}}{(x-2)^{5}}\right)=$ \qquad
4. (1 pt) Expand the expression as much as possible into a sum and/or difference of logarithms and express powers as factors. Assume $x>4$.

$$
\ln \left(\frac{9 x \sqrt{1+3 x}}{(x-4)^{4}}\right)=
$$

5. (1 pt) Expand the expression as much as possible into a sum and/or difference of logarithms and express powers as factors. Assume $0<x<1$.

$$
\ln \left(\frac{5 x^{6}(\sqrt{1-x})^{5}}{7(x+1)^{2}}\right)=
$$

6. (1 pt) If $\ln a=2, \ln b=3$, and $\ln c=5$, evaluate the following:
(a) $\ln \left(\frac{a^{4}}{b^{1} c^{2}}\right)=$ \qquad
(b) $\ln \sqrt{b^{2} c^{-2} a^{-1}}=$ \qquad
(c) $\frac{\ln \left(a^{3} b^{-2}\right)}{\ln (b c)^{4}}=$ \qquad
(d) $\left(\ln c^{-2}\right)\left(\ln \frac{a}{b^{4}}\right)^{3}=$ \qquad
7. $(1 \mathrm{pt})$ Write the expression as a sum and/or difference of logarithms.
Express powers as factors.
$\ln \left(r^{9} s^{10} \sqrt[9]{r^{3} s^{4}}\right)=$ \qquad
8. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors.
$\ln (19 x(x-16))=$ \qquad
9. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $x>0$ and $y>0$.
$\log \left(x^{18} y^{9}\right)=$ \qquad
10. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $x>0$ and $y>0$.
$\log \left(x^{13}\left(y^{16}\right)^{\frac{1}{3}}\right)=$ \qquad
11. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $x>0$ and $y>0$.
$\ln \left((x y)^{1 / 4}\right)=$ \qquad
12. (1 pt) Write the expression as a sum and/or difference of logarithms. Express powers as factors.
$\log \left(\frac{x^{19} y^{14}}{z^{6}}\right)=$ \qquad
13. (1 pt) Write the expression as a sum and/or difference of logarithms. Express powers as factors.
$\log \left(x^{5} \sqrt{\frac{y^{20}}{z^{6}}}\right)=$
14. (1 pt) Use the Laws of logarithms to rewrite the expression in a form with no logarithm of a product, quotient or power.
$\log \sqrt{\frac{x^{2}+6}{\left(x^{2}+20\right)\left(x^{3}-2\right)^{18}}}=$ \qquad
15. (1 pt) Write the expression as a sum and/or difference of logarithms. Express powers as factors. Assume $x>0$.
$\ln \left(\frac{x^{17} \sqrt{x-1}}{3 x-17}\right)=$ \qquad
16. (1 pt) Rewrite the expression $\log _{2} x+4 \log _{2} y-5 \log _{2} z$ as a single logarithm.

$$
\log _{2} x+4 \log _{2} y-5 \log _{2} z=\log _{2}(\square)
$$

17. (1 pt) Rewrite the expression $5 \log x-2 \log \left(x^{2}+1\right)+$ $5 \log (x-1)$ as a single logarithm.
$5 \log x-2 \log \left(x^{2}+1\right)+5 \log (x-1)=\log (\square)$
18. (1 pt) Rewrite the expression $\ln (a+b)+3 \ln (a-b)-$ $3 \ln c$ as a single logarithm.

$$
\ln (a+b)+3 \ln (a-b)-3 \ln c=\ln (\square)
$$

19. (1 pt) Rewrite the expression $\ln 6+5 \ln x+5 \ln \left(x^{2}+8\right)$ as a single logarithm.
$\ln 6+5 \ln x+5 \ln \left(x^{2}+8\right)=\ln (\square)$
20. (1 pt) Write the expression as a sum and/or difference of logarithms.
Express powers as factors. Assume $x>0$.
$\log \sqrt[5]{x^{2}+19}=$ \qquad
