PGML Cheatsheet

LaTeX Math

This is for typesetting equations using LaTeX math format. The Typeset MathObjects context is used. The
two modes are

o [T \frac{\sqrt(3x+2)}{2}] - Inline mathematics.
o [° \frac{\sqrt(3x+2)}{2} ~"] - Display style mathematics

ASCII Math

This is for typesetting equations using “ascii” math format (or more specifically MathObjects format). The
Typeset MathObjects context is used. The two modes are

e [: sqrt(3x+2)/2 :] - Inline mathematics.
e [:: sqrt(3x+2)/2 ::] - Display style mathematics
The options for this mode are:
o [: sqrt(3x+2)/2 :1* - Typeset in current context instead.
o [: sqrt(3x+2)/2 :1** - Reduce formula before displaying.

o [: sqrt(3x+2)/2 :J*x* - Reduce and typeset in current context instead.

Variable Substitution

This is for substituting a previously defined variable into PGML, inside or outside an existing expression.
The format is [$variable]. E.G. [T£(x) = [$£f]1"]. It supports the following options:

e [$var]* - Do not escape HTML special characters.
e [$var]xx* - Substitute variable and process the result as PGML.

e [$var]x** - Substitute the variable and process the result as LaTeX.

Answer Blanks

Answer blanks are created using the notation [_______ 1. The width of the answer blank is propor-
tional to the width of the resulting field. The correct answer can be specified with the blank. E.G.
| J{"sqrt(x)"}

e For matricies and vectors you can provide an array of answer blanks instead of a single answer blank
by adding a *

[___I+{Matrix([1,2],[3,4])}
e You can specify the length of the blank numerically via [____1{"3x"}{20}.
e Create radio button or popup answers by providing a RadioButtons or PopUp object; i.e. [__]1{$popUp}

e If you provide a string as the correct answer it is turned into a MathObject. You can also provide
MathObjects directly or as variables.

_____ 1{Complex(0,1)} _____ 1{$£}

e Multianswer comparorators can be used by providing the same multianswer to both blanks.

e Comparators can also be provided directly

_____ 1{$f->cmp} _____ J{num_cmp(pi)}

Command Substitution

This is for evaluating a string of Perl code and then including the result into PGML. The format is [@ 1+2 @].

[@ image(insertGraph($graph), width=>300, height=>300) @]*

This mode recognizes the following options:

[@ command @]* - Do not escape HTML special characters.
[@ command @]** - Evaluate command and process the result as PGML.

[@ command @]*** - Evaluate command and process the result as LaTeX.

Miscellaneous Blocks

Bold Text - The text is bold.

Italic Text - The text is italic.

[%. comments %] - The text is a comment and is not rendered.

[| Verbatim Text |] - The text is included verbatim.

print('hello world') "~~~ - The text is printed as programming code.

>> centered << - Creates centered text.

Formatting Markdown

Paragraphs and line breaks. Normal line breaks are ignored and will not break Miscellaneous Blocks.

— Leave a blank line or end a line with three spaces to create a paragraph break. This will break
most Miscellaneous Blocks.

— End a line with two spaces to create a line break. This will not break Miscellaneous blocks,
headings, or right justified text.

Use backslashes to escape PGML special characters (including backslash). HTML and LaTeX special
characters are dealt with automatically.

Indenting - Use four spaces to indent a paragraph. End a paragraph by leaving a blank line or ending
a line with three spaces.

Lists - The type of number or bullet controls the format of the list but not the actual number. Indent
with four spaces to get sub lists.

— * list item - Use a bullet and a space for each item.

— 1. list item - Use a number/letter, a period, and a space for each item.
Heading - Use # for headings. You can use up to six hashes for various sizes.
>> Right Justified - Creates a right justified line or paragraph.

Pre-formatted - Use a colon and three spaces to create a pre-formatted line.

—————— - Use three or more dashes to make a rule. You can also specify the width and size of the rule:
===={200px}{5px}

