32 Composite Functions

Due:

12/15/2015 at 06:00am EST.
Students will be able to:

- Evaluate the sum, difference, product and quotient of functions
- Evaluate composition of functions given by their formulas
- Evaluate composition of functions given by their graphs
- Determine the domain of composition and arithmetic combination of two functions
- Decompose a function into a composition of two simpler functions

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) This problem gives you some practice identifying how more complicated functions can be built from simpler functions.

Let $f(x)=x^{3}-27$ and let $g(x)=x-3$. Match the functions defined below with the letters labeling their equivalent expressions.

1. $f(g(x))$
2. $g(f(x))$
3. $(f(x))^{2}$
4. $f(x) / g(x)$
A. $-54+27 x-9 x^{2}+x^{3}$
B. $-30+x^{3}$
C. $9+3 x+x^{2}$
D. $729-54 x^{3}+x^{6}$
5. (1 pt) Let f be the linear function (in blue) and let g be the parabolic function (in red) below.

Evaluate the following:

1. $(f \circ g)(2)=$
2. $(g \circ f)(2)=$
3. $(f \circ f)(2)=$
4. $(g \circ g)(2)=$
5. $(f+g)(4)=$
6. $(f / g)(2)=$ \qquad
Enter "DNE" if an answer does not exist.
7. $(1 \mathrm{pt})$ If the function $h(x)=(x-5)^{5}$ is expressed in the form $f \circ g$ with $f(x)=x^{5}$, then find the function $g(x)$.
$g(x)=$ \qquad
8. (1 pt) If the function $h(x)=\frac{1}{x+8}$ is expressed in the form $f \circ g$ with $g(x)=x+8$, then find the function $f(x)$.
$f(x)=$ \qquad
9. (1 pt) Let f, g and h be defined as below. Evaluate $(f \circ g \circ h)(x)$.

$$
\begin{aligned}
& f(x)=x^{4}+6 \\
& g(x)=x-3 \\
& h(x)=\sqrt{x}
\end{aligned}
$$

$$
(f \circ g \circ h)(x)=
$$

\qquad

6. (1 pt) If the answer is ∞, input infinity;

if the answer is $-\infty$, input -infinity.
Given that $f(x)=\frac{1}{x}$ and $g(x)=9 x-7$, calculate
(a) $f \circ g(x)=\longrightarrow$, its domain is all real numbers except
(b) $g \circ f(x)=$ \qquad , its domain is all real numbers except
(c) $f \circ f(x)=$ \qquad its domain is all real numbers except
(d) $g \circ g(x)=$ \qquad its domain is (\qquad -)
7. (1 pt) For this question, input infinity for ∞ and input -infinity for $-\infty$.
Given that $f(x)=x^{2}-3 x$ and $g(x)=x+10$, find
(a) $f+g=$ \qquad and its domain is ($\quad, \quad-\quad$)
(b) $f-g=$ \qquad and its domain is (\qquad
(c) $f g=$ \qquad and its domain is (\qquad
(d) $f / g=$ \qquad and its domain is $x \neq$ \qquad
8. $(1 \mathrm{pt})$ Let $f(x)=\frac{1}{5 x}, g(x)=3 x^{3}$, and $h(x)=8 x^{2}+8$.

Then $f \circ g \circ h(1)=$ \qquad
9. (1 pt) Let $f(x)=\frac{1}{x}$ and $g(x)=9 x-9$. Evaluate the following:

1. $(f \circ g)(x)=$ \qquad
2. $(g \circ f)(x)=$ \qquad
3. $(f \circ f)(x)=$
4. $(g \circ g)(x)=$
5. (1 pt) Given that $f(x)=|x|$ and $g(x)=9 x+3$, calculate
(a) $f \circ g(x)=$ \qquad , its domain is (\qquad -
(b) $g \circ f(x)=$ \qquad , its domain is (\quad, ,
(c) $f \circ f(x)=$ \qquad , its domain is (\quad, \quad _)
(d) $g \circ g(x)=$ \qquad its domain is (
Note: If needed enter ∞ as infinity and $-\infty$ as -infinity .
6. (1 pt) Given that $f(x)=x^{2}-8 x$ and $g(x)=x+10$, find
(a) $f+g=$ \qquad
(b) $f-g=$ \qquad
(c) $f g=$ \qquad
(d) $f / g=$ \qquad
7. (1 pt) Let $f(x)=3 x+4$ and $g(x)=3 x^{2}+3 x$. $(f+g)(7)=$ \qquad
8. (1 pt) Use substitution to compose $D=9 p-2$ and $p=5 q^{4}$. Enter your answer as an equation, and simplify your answer as much as possible.
9. (1 pt) Use substitution to compose $y=2 u^{2}$ and $u=3 x-4$. Enter your answer as an equation, and simplify your answer as much as possible.
10. (1 pt) Express the function $y=\sqrt{x^{2}+8}$ as a composition $y=f(g(x))$ of two simpler functions $y=f(u)$ and $u=g(x)$.
$f(u)=$ \qquad
$g(x)=$ \qquad
11. (1 pt) Express the function $y=2(x-6)^{5}$ as a composition $y=f(g(x))$ of two simpler functions $y=f(u)$ and $u=g(x)$.
$f(u)=$ \qquad
$g(x)=$ \qquad
12. (1 pt) Use substitution to compose $y=4 u^{2}+3 u+5$ and $u=3 x^{4}$. Enter your answer as an equation, and simplify your answer as much as possible.
13. (1 pt) Suppose $f(x)=x^{3}+2$ and $g(x)=\sqrt{x}$. Then
$f(g(x))=$ \qquad
$g(f(x))=$ \qquad
14. (1 pt) If $f(g(x))=5\left(x^{7}+2\right)^{3}$ and $g(x)=x^{7}+2$, find $f(x)$.
$f(x)=$ \qquad
15. (1 pt) Let $f(x)=x^{2}+9 x$ and $g(x)=x-3$. Evaluate the following:
16. $(f \circ g)(x)=$ \qquad
17. $(g \circ f)(x)=$
18. $(f \circ f)(x)=$
19. $(g \circ g)(x)=$
\qquad
\qquad
\qquad
20. (1 pt) Given that $f(x)=5 x-6$ and $g(x)=3-x^{2}$, calculate
(a) $f \circ g(x)=$ \qquad
(b) $g \circ f(x)=$ \qquad
21. (1 pt) Use abs(x) for $|x|$.

Given that $f(x)=|x|$ and $g(x)=9 x-6$, calculate
(a) $f \circ g(x)=$ \qquad
(b) $g \circ f(x)=$ \qquad
(c) $f \circ f(x)=$ \qquad
(d) $g \circ g(x)=$ \qquad
23. (1 pt) Let f be the linear function (in blue) and let g be the parabolic function (in red) below.

Note: If the answer does not exist, enter 'DNE':

1. $(f \circ g)(2)=$ \qquad
2. $(g \circ f)(2)=$ \qquad
3. $(f \circ f)(2)=$ \qquad
4. $(g \circ g)(2)=$
5. $(f+g)(4)=$
6. $(f / g)(2)=$ \qquad -
7. (1 pt) The functions $f(x)$ and $g(x)$ are given in the graph below $(f(x)$ in red and $g(x)$ in blue).

Note: Click on the graph to view a larger graph

Find the corresponding function values.

$$
\begin{aligned}
& (f+g)(5)= \\
& (f-g)(5)=
\end{aligned}
$$

