32 Composite Functions

Due: 12/15/2015 at 06:00am EST.

Students will be able to:

- Evaluate the sum, difference, product and quotient of functions
- Evaluate composition of functions given by their formulas
- Evaluate composition of functions given by their graphs
- Determine the domain of composition and arithmetic combination of two functions
- Decompose a function into a composition of two simpler functions

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) This problem gives you some practice identifying how more complicated functions can be built from simpler functions.

Let $f(x) = x^3 - 27$ and let g(x) = x - 3. Match the functions defined below with the letters labeling their equivalent expressions.

$$\begin{array}{c} _1. \ f(g(x)) \\ _2. \ g(f(x)) \\ _3. \ (f(x))^2 \\ _4. \ f(x)/g(x) \\ \\ \text{A. } -54 + 27x - 9x^2 + x^3 \\ \\ \text{B. } -30 + x^3 \\ \\ \text{C. } 9 + 3x + x^2 \\ \\ \text{D. } 729 - 54x^3 + x^6 \end{array}$$

2. (1 pt) Let f be the linear function (in blue) and let g be the parabolic function (in red) below.

Evaluate the following:

1.	$(f \circ g)(2)$	=	
2.	$(g \circ f)(2)$	=	
3.	$(f \circ f)(2)$	=	
4.	$(g \circ g)(2)$	=	
5.	(f+g)(4)	=	
6.	(f/g)(2)	=	

Enter "DNE" if an answer does not exist.

3. (1 pt) If the function $h(x) = (x-5)^5$ is expressed in the form $f \circ g$ with $f(x) = x^5$, then find the function g(x). $g(x) = ____$

4. (1 pt) If the function $h(x) = \frac{1}{x+8}$ is expressed in the form $f \circ g$ with g(x) = x+8, then find the function f(x).

5. (1 pt) Let f, g and h be defined as below. Evaluate $(f \circ g \circ h)(x)$.

$$f(x) = x^{4} + 6$$

$$g(x) = x - 3$$

$$h(x) = \sqrt{x}$$

 $(f \circ g \circ h)(x) = _$

6. (1 pt) If the answer is ∞ , input infinity; if the answer is $-\infty$, input -infinity. Given that $f(x) = \frac{1}{x}$ and g(x) = 9x - 7, calculate (a) $f \circ g(x) =$ ______, its domain is all real numbers except (b) $g \circ f(x) =$ ______, its domain is all real numbers except (c) $f \circ f(x) =$ ______, its domain is all real numbers except (d) $g \circ g(x) =$ ______, its domain is (______, ____)

7. (1 pt) For this question, input infinity for ∞ and input -infinity for $-\infty$.

Given that <i>j</i>	$f(x) = x^2 - 3x$ and $g(x) = x + 10$, find
(a) $f + g = -$	and its domain is (,)
(b) $f - g = -$	and its domain is (,)
(c) <i>fg</i> =	and its domain is (,)
(d) $f/g = $	and its domain is $x \neq$

8. (1 pt) Let $f(x) = \frac{1}{5x}$, $g(x) = 3x^3$, and $h(x) = 8x^2 + 8$. Then $f \circ g \circ h(1) =$ _____ 9. (1 pt) Let $f(x) = \frac{1}{x}$ and g(x) = 9x - 9. Evaluate the following:

- 1. $(f \circ g)(x) =$ _____ 2. $(g \circ f)(x) =$ _____
- 3. $(f \circ f)(x) =$
- 4. $(g \circ g)(x) =$ _____

10. (1 pt) Given that f(x) = |x| and g(x) = 9x + 3, calculate (a) $f \circ g(x) =$ _____, its domain is (_____, ___) (b) $g \circ f(x) =$ _____, its domain is (_____, ___) (c) $f \circ f(x) =$ _____, its domain is (_____, ___) (d) $g \circ g(x) =$ _____, its domain is (_____, ___) **Note:** If needed enter ∞ as *infinity* and $-\infty$ as *-infinity*.

11. (1 pt) Given that $f(x) = x^2 - 8x$ and g(x) = x + 10, find (a) f + g =______(b) f - g =______(c) fg =______(d) f/g =______

12. (1 pt) Let f(x) = 3x + 4 and $g(x) = 3x^2 + 3x$. (f + g)(7) = _____

13. (1 pt) Use substitution to compose D = 9p - 2 and $p = 5q^4$. Enter your answer as an equation, and simplify your answer as much as possible.

14. (1 pt) Use substitution to compose $y = 2u^2$ and u = 3x - 4. Enter your answer as an equation, and simplify your answer as much as possible.

15. (1 pt) Express the function $y = \sqrt{x^2 + 8}$ as a composition y = f(g(x)) of two simpler functions y = f(u) and u = g(x).

- *f*(*u*) = _____
- *g*(*x*) = _____

16. (1 pt) Express the function $y = 2(x-6)^5$ as a composition y = f(g(x)) of two simpler functions y = f(u) and u = g(x).

- *f*(*u*) = _____
- *g*(*x*) = _____

17. (1 pt) Use substitution to compose $y = 4u^2 + 3u + 5$ and $u = 3x^4$. Enter your answer as an equation, and simplify your answer as much as possible.

18. (1 pt) Suppose $f(x) = x^3 + 2$ and $g(x) = \sqrt{x}$. Then

$$f(g(x)) =$$

g(f(x)) = _____

19. (1 pt) If
$$f(g(x)) = 5(x^7+2)^3$$
 and $g(x) = x^7+2$, find $f(x)$.

f(x) =_____

20. (1 pt) Let $f(x) = x^2 + 9x$ and g(x) = x - 3. Evaluate the following:

1.	$(f \circ g)(x)$	=	
2.	$(g \circ f)(x)$	=	
3.	$(f \circ f)(x)$	=	

4. $(g \circ g)(x) =$ _____

21. (1 pt) Given that f(x) = 5x - 6 and $g(x) = 3 - x^2$, calculate (a) $f \circ g(x) =$ _____(b) $g \circ f(x) =$ _____

22. (1 pt) Use abs(x) for |x|.

Given that f(x) = |x| and g(x) = 9x - 6, calculate (a) $f \circ g(x) =$ _____

(b)
$$g \circ f(x) =$$

(c)
$$f \circ f(x) =$$

(d) $g \circ g(x) =$ _____

Note: If the answer does not exist, enter 'DNE': 1. $(f \circ g)(2) = _$

- 2. $(g \circ f)(2) =$ ____ 3. $(f \circ f)(2) =$ _____ 4. $(g \circ g)(2) =$ ____ 5. (f+g)(4) =_____
- 6. (f/g)(2) =____

24. (1 pt) The functions f(x) and g(x) are given in the graph below (f(x) in red and g(x) in blue).

Find the corresponding function values.

$$(f+g)(5) =$$

 $(f-g)(5) =$ _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America