Administrator Assignment HP_Set1 due 07/31/2023 at 11:59pm PDT

Problem 1. (1 point) Library/NAU/setLin	nearAlc	ebra/	minpol	yFro	omJ.	pg
	-2	1	0	0	0	1
	0	$^{-2}$	0	0	0	
Find the minimal polynomial $m(x)$ of	0	0	-2	0	0	.
	0	0	0	4	0	
	0	0	0	0	4	
m(x) =	-					-
Answer(s) submitted:						
no response						
submitted: (incorrect)						
recorded: (incorrect)						

Problem 2. (1 point) Library/NAU/setLinearAlgebra/JordanBlockSize
s.pg

Let λ be an eigenvalue of the linear operator *L* and define $L_{\lambda} := L - \lambda I$. The following table lists the nullities of the powers of L_{λ} .

k	1	2	3
4	5	6	
nullity (L_{λ}^k)	6	11	16
20 ~	24	27	

Find the sizes of the Jordan blocks corresponding to λ of the Jordan form of the matrix of *L* as a list of integers.

Sizes: _____ Answer(s) submitted:

no response

submitted: (incorrect) recorded: (incorrect)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Problem 3. (1 point) Library/NAU/setLinearAlgebra/invariantSmalle
st.pg

Consider the multiplication operator $L_A : \mathbb{R}^4 \to \mathbb{R}^4$ where

$$A = \begin{bmatrix} -4 & 5 & -2 & -4 \\ -1 & 1 & -1 & -1 \\ 9 & -14 & 2 & 11 \\ 1 & -1 & 0 & 1 \end{bmatrix}.$$

Find a matrix *B* whose row space is smallest L_A -invariant subspace that contains the vector (0, 0, -1, 0).

no response

submitted: (incorrect)

recorded: (incorrect)

Problem 4. (1 point) Library/NAU/setLinearAlgebra/minpoly2.pg

Let $V = \mathbb{P}_3[x]$ be the vector space of real polynomials in x with degree less than 3. Let $L: V \to V$ be defined by L(p(x)) = 3p''(x) - 5p(x).

a. Find the characteristic polynomial f(t) of L.

 $f(t) = _$

b. Find the minimal polynomial m(t) of L.

 $m(t) = _$

c. Find the minimal polynomial g(t) of L relative to 1 + x.

g(t) =_____

- Answer(s) submitted:
 - no responseno response
 - no response
 - · Ito response

submitted: (incorrect) recorded: (incorrect)