Difference between revisions of "GraphLimit Flash Applet Sample Problem"
Line 169: | Line 169: | ||
debugMode => 0, |
debugMode => 0, |
||
submitActionScript => qq{ |
submitActionScript => qq{ |
||
− | getQE("func").value=getApplet("$appletName").getf_list($x1,"function");getQE("rlimit").value=getApplet("$appletName").getf_list($x2,"rightlimit");getQE("llimit").value=getApplet("$appletName").getf_list($x3,"leftlimit");getQE("limit").value=getApplet("$appletName").getf_list($x4,"limit"); |
||
+ | getQE("func").value=getApplet("$appletName").getf_list($x1,"function"); |
||
+ | getQE("rlimit").value=getApplet("$appletName").getf_list($x2,"rightlimit"); |
||
+ | getQE("llimit").value=getApplet("$appletName").getf_list($x3,"leftlimit"); |
||
+ | getQE("limit").value=getApplet("$appletName").getf_list($x4,"limit"); |
||
}, |
}, |
||
); |
); |
||
Line 180: | Line 183: | ||
# and x-coordinates of four points where jumps, discontinuities or cusps |
# and x-coordinates of four points where jumps, discontinuities or cusps |
||
# occur. |
# occur. |
||
− | $applet->configuration(qq{<xml><hintState>1</hintState><qtype>limits</qtype> |
+ | $applet->configuration(qq{<xml><hintState>1</hintState><qtype>limits</qtype> |
− | + | <seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>}); |
|
+ | $applet->initialState(qq{<xml><hintState>1</hintState><qtype>limits</qtype> |
||
+ | <seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>}); |
||
TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( |
TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( |
Revision as of 16:15, 8 July 2011
Flash Applets embedded in WeBWorK questions GraphLimit Example
Sample Problem with GraphLimit.swf embedded
This sample problem shows how to use this versatile applet.
A standard WeBWorK PG file has five sections:
- A tagging and description section, that describes the problem for future users and authors,
- An initialization section, that loads required macros for the problem,
- A problem set-up section that sets variables specific to the problem,
- A text section, that gives the text that is shown to the student, and
- An answer and solution section, that specifies how the answer(s) to the problem is(are) marked for correctness, and gives a solution that may be shown to the student after the problem set is complete.
The sample file attached to this page shows this; below the file is shown to the left, with a second column on its right that explains the different parts of the problem that are indicated above.
PG problem file | Explanation |
---|---|
##DESCRIPTION ## Graphical limits ## Sample problem to illustrate the use of the GraphLimit.swf Flash applet ##ENDDESCRIPTION ## KEYWORDS('limits') ## DBsubject('Calculus') ## DBchapter('Limits') ## DBsection('Graphical limits') ## Date('7/5/2011') ## Author('Barbara Margolius') ## Institution('Cleveland State University') ## TitleText1('') ## EditionText1('2011') ## AuthorText1('') ## Section1('') ## Problem1('') ######################################################################## # This work is supported in part by the National Science Foundation # under the grant DUE-0941388. ######################################################################## |
This is the tagging and description section of the problem. Note that any line that begins with a "#" character is a comment for other authors who read the problem, and is not interpreted by !WeBWorK. The description is provided to give a quick summary of the problem so that someone reading it later knows what it does without having to read through all of the problem code. All of the tagging information exists to allow the problem to be easily indexed. Because this is a sample problem there isn't a textbook per se, and we've used some default tagging values. There is an on-line list of current chapter and section names and a similar list of keywords. The list of keywords should be comma separated and quoted (e.g., KEYWORDS('calculus','derivatives')). |
DOCUMENT(); loadMacros( "PGstandard.pl", "AppletObjects.pl", "MathObjects.pl", ); |
This is the initialization section of the problem. The first executed line of the problem must be the
The |
# Set up problem $qtype='limits'; $showHint = 0; if(time<$dueDate){ $showHint=1; } $x1=random(-8,-2,1); $x2=$x1+random(2,4,1); $x3=$x2+random(2,3,1); $x4=random($x3+2,7,1); |
This is the problem set-up section of the problem.
The GraphLimits.swf applet wil accept four different question types, specified with the
The applet has solution/hint information embedded in it. When
The four variables |
########################################################################## # How to use the Graph_Test applet. # Purpose: The purpose of this applet is to ask graphical limit questions # Use of applet: The applet state consists of the following fields: # qType - question type: limits, continuity, first_derivative, # second_derivative # hintState - context sensitive help is either on or off. # Generally turned on after dueDate # problemSeed - the seed sets the random parameters that control which # graph is chosen. If the seed is changed, the graph is changed. ########################################################################## # qType = limits # right_limits - returns a list of points (a,b) such that # lim_{x\to a^-}f(x)=b, but lim_{x\to a^+}f(x)\= b # left_limits - returns a list of points (a,b) such that # lim_{x\to a^+}f(x)=b, but lim_{x\to a^-}f(x)\= b # neither_limits - returns a list of points (a,b) such that # lim_{x\to a^-}f(x)\=lim_{x\to a^+}f(x)\= f(a)=b # get_intervals returns a list of intervals on which f(x) is continuous. # get_f_of_x - given x value, returns f(x). # returns NaN for x notin [-10,10]. # getf_list - given x value and string returns # "function" - returns f(x) # "leftlimit" - returns lim_{x->a^-}f(x) # "rightlimit" - returns lim_{x->a^+}f(x) # "limit" - returns lim_{x->a}f(x) or "DNE" # # What does the applet do? # The applet draws a graph with jumps, a cusp and discontinuities # When turned on, there is context sensitive help. ############################################################################## ################################### # Create link to applet ################################### $appletName = "Graph_Limit2"; $applet = FlashApplet( codebase => findAppletCodebase("$appletName.swf"), appletName => $appletName, appletId => $appletName, setStateAlias => 'setXML', getStateAlias => 'getXML', setConfigAlias => 'setConfig', maxInitializationAttempts => 10, # number of attempts to initialize applet #answerBoxAlias => 'answerBox', height => '475', width => '425', bgcolor => '#ffffff', debugMode => 0, submitActionScript => qq{ getQE("func").value=getApplet("$appletName").getf_list($x1,"function"); getQE("rlimit").value=getApplet("$appletName").getf_list($x2,"rightlimit"); getQE("llimit").value=getApplet("$appletName").getf_list($x3,"leftlimit"); getQE("limit").value=getApplet("$appletName").getf_list($x4,"limit"); }, ); ################################### # Configure applet ################################### # configuration consists of hintState, question type, and random seed, # and x-coordinates of four points where jumps, discontinuities or cusps # occur. $applet->configuration(qq{<xml><hintState>1</hintState><qtype>limits</qtype> <seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>}); $applet->initialState(qq{<xml><hintState>1</hintState><qtype>limits</qtype> <seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>}); TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( debug=>0, includeAnswerBox=>0, # reinitialize_button=>$permissionLevel>=10, ))); BEGIN_TEXT <input type="hidden" name="func" id="func" /> <input type="hidden" name="llimit" id="llimit" /> <input type="hidden" name="rlimit" id="rlimit" /> <input type="hidden" name="limit" id="limit" /> END_TEXT $answerString1 = $inputs_ref->{func}; my $correctAnswer1 = Compute("$answerString1"); $answerString2 = $inputs_ref->{rlimit}; my $correctAnswer2 = Compute("$answerString2"); $answerString3 = $inputs_ref->{llimit}; my $correctAnswer3 = Compute("$answerString3"); $answerString4 = $inputs_ref->{limit}; my $correctAnswer4 = Compute("$answerString4"); |
This is the problem set-up section of the problem.
The GraphLimits.swf applet wil accept four different question types, specified with the
The applet has solution/hint information embedded in it. When
The four variables |
BEGIN_TEXT $BR The graph shown is for the function \(f(x)\). $BR Compute the following quantities: $BR a) \(f($x1)=\) \{ans_rule(35) \} $BR b) \(\lim_{x\to {$x2}^+}f(x)=\) \{ans_rule(35) \} $BR c) \(\lim_{x\to {$x3}^-}f(x)=\) \{ans_rule(35) \} $BR d) \(\lim_{x\to {$x4}}f(x)=\) \{ans_rule(35) \} $BR Enter "None" if no intervals meet this criteria. END_TEXT Context()->normalStrings; |
This is the text section of the problem. The
Mathematical equations are delimited by
There are a number of variables that set formatting: |
############################################################## # # Answers # ## answer evaluators ANS( $correctAnswer1->cmp() ); #checks AnSwEr00001 ANS( $correctAnswer2->cmp() ); #checks AnSwEr00002 ANS( $correctAnswer3->cmp() ); #checks AnSwEr00003 ANS(num_cmp($correctAnswer4,strings=>['DNE'])); #checks AnSwEr00004 ENDDOCUMENT(); |
This is the answer section of the problem. The problem answer is set by the The solution is embedded in the applet and becomes available when the due date has passed.
The |