Difference between revisions of "GraphLimit Flash Applet Sample Problem"
Bmargolius (talk | contribs) |
|||
(100 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
<em>This sample problem shows how to use this versatile applet.</em> |
<em>This sample problem shows how to use this versatile applet.</em> |
||
</p> |
</p> |
||
+ | <p style="background-color:#93BED2;border:black solid 1px;padding:3px;">This applet and WeBWorK problem are based upon work supported by the National Science Foundation under Grant Number DUE-0941388.</p> |
||
+ | <p style="background-color:#ffccff;border:black solid 1px;padding:3px;">Click here to see a problem like this in action: [https://testcourses.webwork.maa.org/webwork2/FlashAppletDemos/variousAppletProblems/3/?user=practice2&effectiveUser=practice2&key=vOlNtTIpJ7gEy9yqynYg7vjpjhXylDJL&displayMode=MathJax&showOldAnswers=0 testcourses.webwork.maa.org/webwork2/FlashAppletDemos]</p> |
||
<p> |
<p> |
||
− | A standard WeBWorK PG file has |
+ | A standard WeBWorK PG file with an embedded applet has six sections: |
</p> |
</p> |
||
<ol> |
<ol> |
||
Line 12: | Line 14: | ||
<li> An <em>initialization section</em>, that loads required macros for the problem,</li> |
<li> An <em>initialization section</em>, that loads required macros for the problem,</li> |
||
<li> A <em>problem set-up section</em> that sets variables specific to the problem,</li> |
<li> A <em>problem set-up section</em> that sets variables specific to the problem,</li> |
||
+ | <li> An <em>Applet link section</em> that inserts the applet and configures it, (this section is not present in WeBWorK problems without an embedded applet)</li> |
||
<li> A <em>text section</em>, that gives the text that is shown to the student, and</li> |
<li> A <em>text section</em>, that gives the text that is shown to the student, and</li> |
||
<li> An <em>answer and solution section</em>, that specifies how the answer(s) to the problem is(are) marked for correctness, and gives a solution that may be shown to the student after the problem set is complete. </li> |
<li> An <em>answer and solution section</em>, that specifies how the answer(s) to the problem is(are) marked for correctness, and gives a solution that may be shown to the student after the problem set is complete. </li> |
||
</ol> |
</ol> |
||
<p> |
<p> |
||
− | The sample file attached to this page shows this; below the file is shown to the left, with a second column on its right that explains the different parts of the problem that are indicated above. |
+ | The sample file attached to this page shows this; below the file is shown to the left, with a second column on its right that explains the different parts of the problem that are indicated above. A screenshot of the applet embedded in this WeBWorK problem is shown below:<br> |
+ | [[File:GraphLimit.jpg]] |
||
+ | <br> |
||
+ | There are other example problems using this applet: <br> |
||
+ | [[GraphLimit Flash Applet Sample Problem 2]]<br> |
||
+ | And other problems using applets:<br> |
||
+ | [[Derivative Graph Matching Flash Applet Sample Problem]]<br> |
||
+ | [[GraphSketch Flash Applet Sample Problem 1]]<br> |
||
+ | [[USub Applet Sample Problem]]<br> |
||
+ | [[trigwidget Applet Sample Problem]]<br> |
||
+ | [[solidsWW Flash Applet Sample Problem 1]]<br> |
||
+ | [[solidsWW Flash Applet Sample Problem 2]]<br> |
||
+ | [[solidsWW Flash Applet Sample Problem 3]]<br> |
||
+ | [[Hint Applet (Trigonometric Substitution) Sample Problem]]<br> |
||
+ | [[phasePortrait Flash Applet Sample Problem 1]]<br> |
||
+ | [[autonomous solution sketch Flash Applet Sample Problem]]<br> |
||
+ | Other useful links:<br> |
||
+ | [[Flash Applets Tutorial]]<br> |
||
+ | [[Things to consider in developing WeBWorK problems with embedded Flash applets]] |
||
</p> |
</p> |
||
− | <table cellspacing="0" cellpadding="2" border="0"> |
||
+ | |||
− | <tr valign="top"> |
||
+ | {| style=" background-color:#ffffff;" cellpadding="5" cellspacing="0" border="1" |
||
− | + | ! scope="col" width="50%"| PG problem file |
|
− | + | ! scope="col" width="50%"| Explanation |
|
− | + | |- style=" background-color:#ddddff;" |
|
− | + | | <pre> |
|
− | <td style="background-color:#ddddff;border:black 1px dashed;"> |
||
− | <pre> |
||
##DESCRIPTION |
##DESCRIPTION |
||
## Graphical limits |
## Graphical limits |
||
− | ## Sample problem to illustrate |
+ | ## Sample problem to illustrate |
+ | ## the use of the GraphLimit.swf |
||
+ | ## Flash applet |
||
##ENDDESCRIPTION |
##ENDDESCRIPTION |
||
Line 42: | Line 45: | ||
## Section1('') |
## Section1('') |
||
## Problem1('') |
## Problem1('') |
||
− | + | ########################################### |
|
− | # This work is supported in part by |
+ | # This work is supported in part by |
+ | # the National Science Foundation |
||
# under the grant DUE-0941388. |
# under the grant DUE-0941388. |
||
− | + | ########################################### |
|
</pre> |
</pre> |
||
− | < |
+ | | <p> |
− | + | This is the <strong>tagging and description |
|
− | < |
+ | </strong> section of the problem. Note that |
− | + | any line that begins with a "#" character is |
|
+ | a <em>comment</em> for other authors who |
||
+ | read the problem, and is not interpreted by |
||
+ | WeBWorK. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | The description is provided to give a quick summary of the problem so that someone reading it later knows what it does without having to read through all of the problem code. |
||
+ | The description is provided to give a |
||
+ | quick summary of the problem so that |
||
+ | someone reading it later knows what it |
||
+ | does without having to read through all |
||
+ | of the problem code. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | All of the tagging information exists to allow the problem to be easily indexed. Because this is a sample problem there isn't a textbook per se, and we've used some default tagging values. There is an on-line |
||
+ | All of the tagging information exists to |
||
+ | allow the problem to be easily indexed. |
||
+ | Because this is a sample problem there |
||
+ | isn't a textbook per se, and we've used |
||
+ | some default tagging values. There is an on-line |
||
[http://hobbes.la.asu.edu/Holt/chaps-and-secs.html list of current chapter and section names] and a similar |
[http://hobbes.la.asu.edu/Holt/chaps-and-secs.html list of current chapter and section names] and a similar |
||
[http://hobbes.la.asu.edu/Holt/keywords.html list of keywords]. The list of keywords should be comma separated and quoted (e.g., KEYWORDS('calculus','derivatives')). |
[http://hobbes.la.asu.edu/Holt/keywords.html list of keywords]. The list of keywords should be comma separated and quoted (e.g., KEYWORDS('calculus','derivatives')). |
||
</p> |
</p> |
||
− | </td> |
||
+ | |- style=" background-color:#ddffdd;" |
||
− | < |
+ | | <pre> |
− | <tr valign="top"> |
||
− | <td style="background-color:#ddffdd;border:black 1px dashed;"> |
||
− | <pre> |
||
DOCUMENT(); |
DOCUMENT(); |
||
Line 70: | Line 81: | ||
); |
); |
||
</pre> |
</pre> |
||
− | < |
+ | | <p> |
− | <td style="background-color:#ccffcc;padding:7px;"> |
||
− | <p> |
||
This is the <strong>initialization section</strong> of the problem. The first executed line of the problem <strong>must</strong> be the <code>DOCUMENT();</code> command. Note that every command <em>must end with a semicolon</em>. |
This is the <strong>initialization section</strong> of the problem. The first executed line of the problem <strong>must</strong> be the <code>DOCUMENT();</code> command. Note that every command <em>must end with a semicolon</em>. |
||
</p> |
</p> |
||
Line 76: | Line 87: | ||
The <code>loadMacros</code> command loads information that works behind the scenes. For our purposes we can usually just load the macros shown here and not worry about things further. |
The <code>loadMacros</code> command loads information that works behind the scenes. For our purposes we can usually just load the macros shown here and not worry about things further. |
||
</p> |
</p> |
||
− | </td> |
||
+ | |- style=" background-color:#ffffdd;" |
||
− | < |
+ | | <pre> |
− | <tr valign="top"> |
||
− | <td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
− | <pre> |
||
# Set up problem |
# Set up problem |
||
$qtype='limits'; |
$qtype='limits'; |
||
$showHint = 0; |
$showHint = 0; |
||
− | if(time |
+ | if(time>$dueDate){ |
$showHint=1; |
$showHint=1; |
||
} |
} |
||
Line 91: | Line 102: | ||
$x4=random($x3+2,7,1); |
$x4=random($x3+2,7,1); |
||
</pre> |
</pre> |
||
− | < |
+ | | <p> |
− | < |
+ | The GraphLimits.swf applet will accept four different question types, specified with the <code>$qtype</code> variable. These are: limits, continuity, first_derivative and second_derivative. This sample problem is set to 'limits'. |
− | <p> |
||
− | This is the <strong>problem set-up section</strong> of the problem. |
||
− | </p> |
||
− | <p> |
||
− | The GraphLimits.swf applet wil accept four different question types, specified with the <code>$qtype</code> variable. These are: limits, continuity, first_derivative and second_derivative. This sample problem is set to 'limits'. |
||
</p> |
</p> |
||
<p> |
<p> |
||
Line 100: | Line 111: | ||
The four variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are the x-coordinates of four points on the graph that the applet will set to be a removable discontinuity, a jump discontinuity or a cusp. The order of these phenomena is random as are the y-values chosen. The x-coordinates must be between -10 and 10. |
The four variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are the x-coordinates of four points on the graph that the applet will set to be a removable discontinuity, a jump discontinuity or a cusp. The order of these phenomena is random as are the y-values chosen. The x-coordinates must be between -10 and 10. |
||
</p> |
</p> |
||
− | </td> |
||
+ | |- style=" background-color:#ccffff;" |
||
− | < |
+ | | <pre> |
− | + | ####################################### |
|
− | <td style="background-color:#99ffff;border:black 1px dashed;"> |
||
− | <pre> |
||
− | ########################################################################## |
||
# How to use the Graph_Test applet. |
# How to use the Graph_Test applet. |
||
− | # Purpose: The purpose of this |
+ | # Purpose: The purpose of this |
− | # |
+ | # applet is to ask graphical |
− | # |
+ | # limit questions |
− | # |
+ | # Use of applet: The applet |
− | # |
+ | # state consists of the |
− | # |
+ | # following fields: |
− | # |
+ | # qType - question type: limits, |
− | # |
+ | # continuity, first_derivative, |
− | # |
+ | # second_derivative |
+ | # hintState - context sensitive |
||
+ | # help is either on or off. |
||
+ | # Generally turned on after |
||
+ | # dueDate |
||
+ | # problemSeed - the seed sets |
||
+ | # the random parameters that |
||
+ | # control which graph is |
||
+ | # chosen. If the seed is |
||
+ | # changed, the graph is |
||
+ | # changed. |
||
+ | ####################################### |
||
# qType = limits |
# qType = limits |
||
− | # right_limits - returns a |
+ | # right_limits - returns a |
− | # |
+ | # list of points (a,b) |
− | # |
+ | # such that |
− | # lim_{x\to a^ |
+ | # lim_{x\to a^-}f(x)=b, |
− | # |
+ | # but |
− | # |
+ | # lim_{x\to a^+}f(x)\= b |
− | # |
+ | # left_limits - returns a |
− | # |
+ | # list of points (a,b) |
− | # |
+ | # such that |
− | # |
+ | # lim_{x\to a^+}f(x)=b, |
+ | # but |
||
+ | # lim_{x\to a^-}f(x)\= b |
||
+ | # neither_limits - returns |
||
+ | # a list of points (a,b) |
||
+ | # such that |
||
+ | # lim_{x\to a^-}f(x)\= |
||
+ | # lim_{x\to a^+}f(x)\= |
||
+ | # f(a)=b |
||
+ | # get_intervals returns a |
||
+ | # list of intervals on |
||
+ | # which f(x) is continuous. |
||
+ | # get_f_of_x - given x value, |
||
+ | # returns f(x). |
||
+ | # returns NaN for x notin |
||
+ | # [-10,10]. |
||
+ | # getf_list - given x value |
||
+ | # and string returns |
||
# "function" - returns f(x) |
# "function" - returns f(x) |
||
− | # "leftlimit" - returns |
+ | # "leftlimit" - returns |
− | # |
+ | # lim_{x->a^-}f(x) |
− | # " |
+ | # "rightlimit" - returns |
+ | # lim_{x->a^+}f(x) |
||
+ | # "limit" - returns |
||
+ | # lim_{x->a}f(x) or "DNE" |
||
+ | </pre> |
||
+ | | <p>This is the <strong>Applet link section</strong> of the problem. |
||
+ | </p><br> |
||
+ | <p> |
||
+ | Those portions of the code that begin |
||
+ | the line with <code>#</code> |
||
+ | are comments and can be omitted or |
||
+ | replaced with comments appropriate |
||
+ | to your particular problem. |
||
+ | </p> |
||
+ | |- style=" background-color:#ccffff;" |
||
+ | | <pre> |
||
# |
# |
||
# What does the applet do? |
# What does the applet do? |
||
− | # The applet draws a graph |
+ | # The applet draws a graph |
− | # |
+ | # with jumps, a cusp and |
− | # |
+ | # discontinuities |
− | + | # When turned on, there is |
|
+ | # context sensitive help. |
||
+ | ################################ |
||
+ | ############################ |
||
# Create link to applet |
# Create link to applet |
||
− | + | ############################ |
|
− | $appletName = " |
+ | $appletName = "Graph_Limit"; |
$applet = FlashApplet( |
$applet = FlashApplet( |
||
− | codebase |
+ | codebase |
− | + | => findAppletCodebase |
|
− | + | ("$appletName.swf"), |
|
− | + | appletName |
|
− | + | => $appletName, |
|
− | + | appletId |
|
− | + | => $appletName, |
|
− | + | setStateAlias |
|
− | + | => 'setXML', |
|
− | + | getStateAlias |
|
− | + | => 'getXML', |
|
− | + | setConfigAlias |
|
− | + | => 'setConfig', |
|
− | + | maxInitializationAttempts |
|
+ | => 10, |
||
+ | height |
||
+ | => '475', |
||
+ | width |
||
+ | => '425', |
||
+ | bgcolor |
||
+ | => '#e8e8e8', |
||
+ | debugMode |
||
+ | => 0, |
||
+ | submitActionScript |
||
+ | => qq{ |
||
+ | getQE("func").value=getApplet |
||
+ | ("$appletName").getf_list($x1,"function"); |
||
+ | getQE("rlimit").value=getApplet |
||
+ | ("$appletName").getf_list($x2,"rightlimit"); |
||
+ | getQE("llimit").value=getApplet |
||
+ | ("$appletName").getf_list($x3,"leftlimit"); |
||
+ | getQE("limit").value=getApplet |
||
+ | ("$appletName").getf_list($x4,"limit"); |
||
}, |
}, |
||
); |
); |
||
+ | </pre> |
||
+ | | <p>You must include the section that |
||
+ | follows <code># Create link to |
||
+ | applet</code>. If you are embedding |
||
+ | a different applet, from the Graph_Limit |
||
+ | applet, put your applet name in place of |
||
+ | 'Graph_Limit' in the line <code>$appletName =</code> |
||
+ | <code> "Graph_Limit";</code>. |
||
+ | Enter the height of the applet |
||
+ | in the line <code>height => '475',</code> |
||
+ | in place of 475 and the width in the line |
||
+ | <code>width => '425',</code> in place of 425. |
||
+ | </p><br> |
||
+ | <p>The code <code>qq{ </code><code> |
||
+ | getQE("func").value=getApplet</code> |
||
+ | <code>("$appletName").getf_list($x1,"function");</code><code> |
||
+ | getQE("rlimit").value=getApplet</code> |
||
+ | <code>("$appletName").getf_list($x2,"rightlimit");</code><code> |
||
+ | getQE("llimit").value=getApplet</code> |
||
+ | <code>("$appletName").getf_list($x3,"leftlimit");</code><code> |
||
+ | getQE("limit").value=getApplet</code> |
||
+ | <code>("$appletName").getf_list($x4,"limit");</code><code> |
||
+ | }</code> |
||
+ | is called when the 'Submit Answers' |
||
+ | button in the problem is pressed. |
||
+ | There is an external interface function |
||
+ | designed inside the applet. The function |
||
+ | name is 'getf_list'. These lines of code |
||
+ | call the function with javascript. |
||
+ | <code>getf_list</code>, takes two arguments: |
||
+ | the x-coordinate of a point, and a string |
||
+ | value. The string may be any of the |
||
+ | following four alternatives: "function", |
||
+ | "rightlimit", "leftlimit", "limit". |
||
+ | <code>getf_list</code> returns either |
||
+ | the value of the function at the x-coordinate, |
||
+ | or the specified limit. The line <code> |
||
+ | getQE("func").value=getApplet</code> |
||
+ | <code>("$appletName").getf_list($x1,"function");</code> |
||
+ | gets the value of the function at <code>$x1</code> |
||
+ | and stores this value in the hidden javascript |
||
+ | form field named "func".</p> |
||
+ | |- style=" background-color:#ccffff;" |
||
+ | | <pre> |
||
################################### |
################################### |
||
− | + | # Configure applet |
|
− | + | ################################### |
|
− | + | # configuration consists of |
|
− | + | # hintState, question type, and |
|
− | + | # random seed, and x-coordinates of |
|
− | + | # four points where jumps, |
|
− | + | # discontinuities or cusps |
|
− | + | # occur. |
|
+ | $applet->configuration(qq{<xml> |
||
+ | <hintState>$hintState</hintState> |
||
+ | <qtype>limits</qtype> |
||
+ | <seed>$problemSeed</seed> |
||
+ | <xlist x1='$x1' x2='$x2' |
||
+ | x3='$x3' x4='$x4' /></xml>}); |
||
+ | $applet->initialState(qq{<xml> |
||
+ | <hintState>$hintState</hintState> |
||
+ | <qtype>limits</qtype> |
||
+ | <seed>$problemSeed</seed> |
||
+ | <xlist x1='$x1' x2='$x2' |
||
+ | x3='$x3' x4='$x4' /></xml>}); |
||
− | TEXT( MODES(TeX=>'object code', |
+ | TEXT( MODES(TeX=>'object code', |
+ | HTML=>$applet->insertAll( |
||
debug=>0, |
debug=>0, |
||
includeAnswerBox=>0, |
includeAnswerBox=>0, |
||
− | # reinitialize_button=>$permissionLevel>=10, |
||
))); |
))); |
||
− | |||
+ | TEXT(MODES(TeX=>"", HTML=><<'END_TEXT')); |
||
− | BEGIN_TEXT |
||
+ | <input type="hidden" |
||
− | + | name="func" id="func" /> |
|
− | <input type="hidden" |
+ | <input type="hidden" |
− | + | name="llimit" id="llimit" /> |
|
− | <input type="hidden" |
+ | <input type="hidden" |
+ | name="rlimit" id="rlimit" /> |
||
+ | <input type="hidden" |
||
+ | name="limit" id="limit" /> |
||
END_TEXT |
END_TEXT |
||
− | $answerString1 = |
+ | $answerString1 = |
− | + | $inputs_ref->{func}; |
|
+ | my $correctAnswer1 = |
||
+ | Compute("$answerString1"); |
||
− | $answerString2 = |
+ | $answerString2 = |
− | + | $inputs_ref->{rlimit}; |
|
+ | my $correctAnswer2 = |
||
+ | Compute("$answerString2"); |
||
− | $answerString3 = |
+ | $answerString3 = |
− | + | $inputs_ref->{llimit}; |
|
+ | my $correctAnswer3 = |
||
+ | Compute("$answerString3"); |
||
+ | |||
+ | $answerString4 = |
||
+ | $inputs_ref->{limit}; |
||
+ | my $correctAnswer4 = |
||
+ | Compute("$answerString4"); |
||
− | $answerString4 = $inputs_ref->{limit}; |
||
− | my $correctAnswer4 = Compute("$answerString4"); |
||
</pre> |
</pre> |
||
− | </td> |
||
+ | | <p> The lines <code>$applet->configuration</code> |
||
− | <td style="background-color:#ffffcc;padding:7px;"> |
||
+ | <code>(qq{<xml><hintState>$hintState</hintState></code> |
||
+ | <code><qtype>$qtype</qtype></code> |
||
+ | <code><seed>$problemSeed</seed></code> |
||
+ | <code><xlist x1='$x1' x2='$x2'</code> |
||
+ | <code> x3='$x3' x4='$x4' /></code> |
||
+ | <code></xml>});</code> and <code>$applet</code> |
||
+ | <code>->initialState</code><code>(qq{<xml></code> |
||
+ | <code><hintState>$hintState</hintState></code> |
||
+ | <code><qtype>$qtype</qtype></code><code><seed>$problemSeed</seed></code> |
||
+ | <code><xlist x1='$x1' x2='$x2'</code><code> x3='$x3' x4='$x4' /></code> |
||
+ | <code></xml>});</code> configure the applet. |
||
+ | The configuration of the applet is done in xml. |
||
+ | The hintState is set to the variable |
||
+ | <code>$hintState</code>, the question type is set to |
||
+ | <code>$qtype</code> and the problem seed is the |
||
+ | WeBWorK environmental variable <code>$problemSeed</code>. |
||
+ | The variables <code>$x1</code>, <code>$x2</code>, |
||
+ | <code>$x3</code> and <code>$x4</code> are also |
||
+ | passed to the applet. |
||
+ | </p><br> |
||
<p> |
<p> |
||
− | This is the <strong>problem set-up section</strong> of the problem. |
||
+ | The hidden form fields are created in the code block: |
||
− | < |
+ | <code> |
+ | TEXT(MODES(TeX=>"", HTML=><<'END_TEXT')); |
||
+ | <input type="hidden"</code> |
||
+ | <code> name="func" id="func" /></code> |
||
+ | <code> |
||
+ | <input type="hidden"</code> |
||
+ | <code> name="llimit" id="llimit" /></code> |
||
+ | <code> |
||
+ | <input type="hidden"</code> |
||
+ | <code> name="rlimit" id="rlimit" /></code> |
||
+ | <code> |
||
+ | <input type="hidden"</code> |
||
+ | <code> name="limit" id="limit" /></code> |
||
+ | <code> |
||
+ | END_TEXT |
||
+ | </code> |
||
+ | The line <code>TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));</code> |
||
+ | prevents the hidden fields from becoming part of the hard copy. |
||
+ | </p><br> |
||
+ | |||
<p> |
<p> |
||
− | The GraphLimits.swf applet wil accept four different question types, specified with the <code>$qtype</code> variable. These are: limits, continuity, first_derivative and second_derivative. This sample problem is set to 'limits'. |
||
+ | <code>TEXT( MODES(TeX=>'object code',</code> |
||
+ | <code> HTML=>$applet->insertAll(</code> |
||
+ | <code> |
||
+ | debug=>0,</code> |
||
+ | <code> |
||
+ | includeAnswerBox=>0,</code> |
||
+ | <code> |
||
+ | reinitialize_button=>$permissionLevel>=10,</code> |
||
+ | <code> |
||
+ | )));</code> actually embeds the applet |
||
+ | in the WeBWorK problem. |
||
+ | </p><br> |
||
+ | <p>When the submit button is pressed, the |
||
+ | hidden form fields defined in this block are |
||
+ | filled with information from the applet. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | The applet has solution/hint information embedded in it. When <code>$hintState=0</code>, this information is not shown. When <code>$hintState=1</code>, this information is revealed. The <code>time</code> parameter tracks the current date and time. The conditional compares that to the due date for the problem set (in the <code>$dueDate</code> scalar variable) and sets <code>$hintState</code> to 1 if the due date has passed and leaves <code>$hintState</code> set to 0 if the assignment is not yet due. |
||
+ | The data from the hidden form fields is used |
||
− | </p> |
||
+ | in these simple perl subroutines to define the |
||
− | <p> |
||
+ | correct answers to the four questions that are |
||
− | The four variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are the x-coordinates of four points on the graph that the applet will set to be a removable discontinuity, a jump discontinuity or a cusp. The order of these phenomena is random as are the y-values chosen. The x-coordinates must be between -10 and 10. |
||
+ | part of this WeBWorK problem.</p> |
||
− | </p> |
||
+ | <p>The WeBWorK variable $answerString1 is the |
||
− | </td> |
||
+ | content of the hidden form field "func". |
||
− | </tr> |
||
+ | $correctAnswer1 is the solution to the first |
||
− | <tr valign="top"> |
||
+ | question. The solutions for the next two |
||
− | <td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
+ | questions are defined in a similar way. |
||
− | <pre> |
||
+ | The final question also has 'DNE' as a possible |
||
+ | correct answer for the student to enter. The |
||
+ | way that the applet is designed, the left and |
||
+ | right limits always exist.</p> |
||
+ | |- style=" background-color:#ccffff;" |
||
+ | | <pre> |
||
+ | TEXT(MODES(TeX=>"", HTML=><<'END_TEXT')); |
||
+ | <script> |
||
+ | if (navigator.appVersion.indexOf("MSIE") > 0) { |
||
+ | document.write("<div width='3in' |
||
+ | align='center' style='background:yellow'> |
||
+ | You seem to be using Internet Explorer. |
||
+ | <br/>It is recommended that another |
||
+ | browser be used to view this page.</div>"); |
||
+ | } |
||
+ | </script> |
||
+ | END_TEXT |
||
+ | </pre> |
||
+ | | <p> |
||
+ | The text between the <code><script></code> tags detects whether the student is using Internet Explorer. If the student is using this browser, a warning is issued and the student is advised to use another browser. IE mis-sizes the applets. Some will work correctly when displayed at the wrong size, but others will fail. We do not recommend using IE with WeBWorK problems with Flash embedded.</p> |
||
+ | |- style=" background-color:#ffdddd;" |
||
+ | | <pre> |
||
BEGIN_TEXT |
BEGIN_TEXT |
||
$BR |
$BR |
||
− | The graph shown is for the |
+ | The graph shown is for the |
− | + | function \(f(x)\). |
|
+ | $BR Compute the following |
||
+ | quantities: |
||
$BR |
$BR |
||
a) |
a) |
||
Line 236: | Line 342: | ||
$BR |
$BR |
||
− | Enter "None" if no intervals meet this criteria. |
||
− | |||
END_TEXT |
END_TEXT |
||
Context()->normalStrings; |
Context()->normalStrings; |
||
</pre> |
</pre> |
||
− | <td style="background-color:#ffcccc;padding:7px;"> |
||
+ | | <p> |
||
− | <p> |
||
+ | This is the <strong>text section</strong> |
||
− | This is the <strong>text section</strong> of the problem. The <code>TEXT(beginproblem());</code> line displays a header for the problem, and the <code>Context()->texStrings</code> line sets how formulas are displayed in the text, and we reset this after the text section. Everything between the <code>BEGIN_TEXT</code> and <code>END_TEXT</code> lines (each of which must appear alone on a line) is shown to the student. |
||
+ | of the problem. The |
||
+ | <code>TEXT(beginproblem());</code> line |
||
+ | displays a header for the problem, and |
||
+ | the <code>Context()->texStrings</code> |
||
+ | line sets how formulas are displayed in the |
||
+ | text, and we reset this after the text section. |
||
+ | Everything between the <code>BEGIN_TEXT</code> |
||
+ | and <code>END_TEXT</code> lines (each of which |
||
+ | must appear alone on a line) is shown to the |
||
+ | student. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | Mathematical equations are delimited by <code class="tex2math_ignore">\( \)</code> (for inline equations) or <code class="tex2math_ignore">\[ \]</code> (for displayed equations); in these contexts inserted text is assumed to be TeX code. |
||
+ | Mathematical equations are delimited by |
||
+ | <code class="tex2math_ignore">\( \)</code> |
||
+ | (for inline equations) or <code class="tex2math_ignore">\[ \]</code> |
||
+ | (for displayed equations); in these contexts inserted |
||
+ | text is assumed to be TeX code. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | There are a number of variables that set |
+ | There are a number of variables that set |
− | + | formatting: <code>$PAR</code> is a paragraph |
|
+ | break (like <code>\par</code> in TeX). |
||
+ | [[FormatVariableList|This page]] gives a list |
||
+ | of variables like this. Finally, <code>\{ \}</code> |
||
+ | sets off <em>code that will be executed |
||
+ | in the problem text</em>. Here, <code>ans_rule(35)</code> |
||
+ | is a function that inserts an answer blank 35 |
||
+ | characters wide. |
||
</p> |
</p> |
||
− | </td> |
||
+ | |- style=" background-color:#eeccff;" |
||
− | < |
+ | | <pre> |
− | + | ############################# |
|
− | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
− | <pre> |
||
− | ############################################################## |
||
# |
# |
||
# Answers |
# Answers |
||
Line 260: | Line 377: | ||
## answer evaluators |
## answer evaluators |
||
− | ANS( $correctAnswer1->cmp() ); |
+ | ANS( $correctAnswer1->cmp() ); |
− | + | #checks AnSwEr00001 |
|
− | ANS( $ |
+ | ANS( $correctAnswer2->cmp() ); |
− | + | #checks AnSwEr00002 |
|
+ | ANS( $correctAnswer3->cmp() ); |
||
+ | #checks AnSwEr00003 |
||
+ | ANS(num_cmp($correctAnswer4, |
||
+ | strings=>['DNE'])); |
||
+ | #checks AnSwEr00004 |
||
ENDDOCUMENT(); |
ENDDOCUMENT(); |
||
</pre> |
</pre> |
||
− | <td style="background-color:#eeccff;padding:7px;"> |
||
+ | | <p> |
||
− | <p> |
||
+ | This is the <strong>answer</strong> |
||
− | This is the <strong>answer</strong> section of the problem. The problem answer is set by the <code>ANS( $correctAnswer1->cmp() );</code>, <code>ANS( $correctAnswer2->cmp() );</code>, <code>ANS( $correctAnswer3->cmp() );</code>, and <code>ANS(num_cmp($correctAnswer4,strings=>['DNE']));</code> lines. These compare the student's answer with the answers returned from the applet. Answers 1-3 follow the same basic structure. The fourth answer allows for either a numeric answer or the string 'DNE' for limits that do not exist. |
||
+ | section of the problem. The problem answer |
||
+ | is set by the <code>ANS( $correctAnswer1->cmp() );</code>, |
||
+ | <code>ANS( $correctAnswer2->cmp() );</code>, |
||
+ | <code>ANS( $correctAnswer3->cmp() );</code>, |
||
+ | and <code>ANS(num_cmp</code> |
||
+ | <code>($correctAnswer4,</code> |
||
+ | <code>strings=>['DNE']));</code> lines. |
||
+ | These compare the student's answer with the |
||
+ | answers returned from the applet. Answers 1-3 |
||
+ | follow the same basic structure. The fourth |
||
+ | answer allows for either a numeric answer or |
||
+ | the string 'DNE' for limits that do not exist. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | The solution is embedded in the applet and |
+ | The solution is embedded in the applet and |
+ | becomes available when the due date has passed. |
||
</p> |
</p> |
||
<p> |
<p> |
||
− | The <code>ENDDOCUMENT();</code> command is the |
+ | The <code>ENDDOCUMENT();</code> command is the |
+ | last command in the file. |
||
</p> |
</p> |
||
− | </td> |
||
+ | |} |
||
− | </tr> |
||
+ | |||
− | </table> |
||
+ | == License == |
||
+ | |||
+ | The Flash applets developed under DUE-0941388 are protected under the following license: |
||
+ | [http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported License]. |
||
[[Category:Sample Problems]] |
[[Category:Sample Problems]] |
||
[[Category:Applets]] |
[[Category:Applets]] |
||
[[Category:Problem_Techniques]] |
[[Category:Problem_Techniques]] |
||
+ | [[Category:Flash Applets]] |
Latest revision as of 17:56, 9 August 2013
Flash Applets embedded in WeBWorK questions GraphLimit Example
Sample Problem with GraphLimit.swf embedded
This sample problem shows how to use this versatile applet.
This applet and WeBWorK problem are based upon work supported by the National Science Foundation under Grant Number DUE-0941388.
Click here to see a problem like this in action: testcourses.webwork.maa.org/webwork2/FlashAppletDemos
A standard WeBWorK PG file with an embedded applet has six sections:
- A tagging and description section, that describes the problem for future users and authors,
- An initialization section, that loads required macros for the problem,
- A problem set-up section that sets variables specific to the problem,
- An Applet link section that inserts the applet and configures it, (this section is not present in WeBWorK problems without an embedded applet)
- A text section, that gives the text that is shown to the student, and
- An answer and solution section, that specifies how the answer(s) to the problem is(are) marked for correctness, and gives a solution that may be shown to the student after the problem set is complete.
The sample file attached to this page shows this; below the file is shown to the left, with a second column on its right that explains the different parts of the problem that are indicated above. A screenshot of the applet embedded in this WeBWorK problem is shown below:
There are other example problems using this applet:
GraphLimit Flash Applet Sample Problem 2
And other problems using applets:
Derivative Graph Matching Flash Applet Sample Problem
GraphSketch Flash Applet Sample Problem 1
USub Applet Sample Problem
trigwidget Applet Sample Problem
solidsWW Flash Applet Sample Problem 1
solidsWW Flash Applet Sample Problem 2
solidsWW Flash Applet Sample Problem 3
Hint Applet (Trigonometric Substitution) Sample Problem
phasePortrait Flash Applet Sample Problem 1
autonomous solution sketch Flash Applet Sample Problem
Other useful links:
Flash Applets Tutorial
Things to consider in developing WeBWorK problems with embedded Flash applets
PG problem file | Explanation |
---|---|
##DESCRIPTION ## Graphical limits ## Sample problem to illustrate ## the use of the GraphLimit.swf ## Flash applet ##ENDDESCRIPTION ## KEYWORDS('limits') ## DBsubject('Calculus') ## DBchapter('Limits') ## DBsection('Graphical limits') ## Date('7/5/2011') ## Author('Barbara Margolius') ## Institution('Cleveland State University') ## TitleText1('') ## EditionText1('2011') ## AuthorText1('') ## Section1('') ## Problem1('') ########################################### # This work is supported in part by # the National Science Foundation # under the grant DUE-0941388. ########################################### |
This is the tagging and description section of the problem. Note that any line that begins with a "#" character is a comment for other authors who read the problem, and is not interpreted by WeBWorK. The description is provided to give a quick summary of the problem so that someone reading it later knows what it does without having to read through all of the problem code. All of the tagging information exists to allow the problem to be easily indexed. Because this is a sample problem there isn't a textbook per se, and we've used some default tagging values. There is an on-line list of current chapter and section names and a similar list of keywords. The list of keywords should be comma separated and quoted (e.g., KEYWORDS('calculus','derivatives')). |
DOCUMENT(); loadMacros( "PGstandard.pl", "AppletObjects.pl", "MathObjects.pl", ); |
This is the initialization section of the problem. The first executed line of the problem must be the
The |
# Set up problem $qtype='limits'; $showHint = 0; if(time>$dueDate){ $showHint=1; } $x1=random(-8,-2,1); $x2=$x1+random(2,4,1); $x3=$x2+random(2,3,1); $x4=random($x3+2,7,1); |
The GraphLimits.swf applet will accept four different question types, specified with the
The applet has solution/hint information embedded in it. When
The four variables |
####################################### # How to use the Graph_Test applet. # Purpose: The purpose of this # applet is to ask graphical # limit questions # Use of applet: The applet # state consists of the # following fields: # qType - question type: limits, # continuity, first_derivative, # second_derivative # hintState - context sensitive # help is either on or off. # Generally turned on after # dueDate # problemSeed - the seed sets # the random parameters that # control which graph is # chosen. If the seed is # changed, the graph is # changed. ####################################### # qType = limits # right_limits - returns a # list of points (a,b) # such that # lim_{x\to a^-}f(x)=b, # but # lim_{x\to a^+}f(x)\= b # left_limits - returns a # list of points (a,b) # such that # lim_{x\to a^+}f(x)=b, # but # lim_{x\to a^-}f(x)\= b # neither_limits - returns # a list of points (a,b) # such that # lim_{x\to a^-}f(x)\= # lim_{x\to a^+}f(x)\= # f(a)=b # get_intervals returns a # list of intervals on # which f(x) is continuous. # get_f_of_x - given x value, # returns f(x). # returns NaN for x notin # [-10,10]. # getf_list - given x value # and string returns # "function" - returns f(x) # "leftlimit" - returns # lim_{x->a^-}f(x) # "rightlimit" - returns # lim_{x->a^+}f(x) # "limit" - returns # lim_{x->a}f(x) or "DNE" |
This is the Applet link section of the problem.
Those portions of the code that begin
the line with |
# # What does the applet do? # The applet draws a graph # with jumps, a cusp and # discontinuities # When turned on, there is # context sensitive help. ################################ ############################ # Create link to applet ############################ $appletName = "Graph_Limit"; $applet = FlashApplet( codebase => findAppletCodebase ("$appletName.swf"), appletName => $appletName, appletId => $appletName, setStateAlias => 'setXML', getStateAlias => 'getXML', setConfigAlias => 'setConfig', maxInitializationAttempts => 10, height => '475', width => '425', bgcolor => '#e8e8e8', debugMode => 0, submitActionScript => qq{ getQE("func").value=getApplet ("$appletName").getf_list($x1,"function"); getQE("rlimit").value=getApplet ("$appletName").getf_list($x2,"rightlimit"); getQE("llimit").value=getApplet ("$appletName").getf_list($x3,"leftlimit"); getQE("limit").value=getApplet ("$appletName").getf_list($x4,"limit"); }, ); |
You must include the section that follows The code |
################################### # Configure applet ################################### # configuration consists of # hintState, question type, and # random seed, and x-coordinates of # four points where jumps, # discontinuities or cusps # occur. $applet->configuration(qq{<xml> <hintState>$hintState</hintState> <qtype>limits</qtype> <seed>$problemSeed</seed> <xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>}); $applet->initialState(qq{<xml> <hintState>$hintState</hintState> <qtype>limits</qtype> <seed>$problemSeed</seed> <xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>}); TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( debug=>0, includeAnswerBox=>0, ))); TEXT(MODES(TeX=>"", HTML=><<'END_TEXT')); <input type="hidden" name="func" id="func" /> <input type="hidden" name="llimit" id="llimit" /> <input type="hidden" name="rlimit" id="rlimit" /> <input type="hidden" name="limit" id="limit" /> END_TEXT $answerString1 = $inputs_ref->{func}; my $correctAnswer1 = Compute("$answerString1"); $answerString2 = $inputs_ref->{rlimit}; my $correctAnswer2 = Compute("$answerString2"); $answerString3 = $inputs_ref->{llimit}; my $correctAnswer3 = Compute("$answerString3"); $answerString4 = $inputs_ref->{limit}; my $correctAnswer4 = Compute("$answerString4"); |
The lines
The hidden form fields are created in the code block:
When the submit button is pressed, the hidden form fields defined in this block are filled with information from the applet. The data from the hidden form fields is used in these simple perl subroutines to define the correct answers to the four questions that are part of this WeBWorK problem. The WeBWorK variable $answerString1 is the content of the hidden form field "func". $correctAnswer1 is the solution to the first question. The solutions for the next two questions are defined in a similar way. The final question also has 'DNE' as a possible correct answer for the student to enter. The way that the applet is designed, the left and right limits always exist. |
TEXT(MODES(TeX=>"", HTML=><<'END_TEXT')); <script> if (navigator.appVersion.indexOf("MSIE") > 0) { document.write("<div width='3in' align='center' style='background:yellow'> You seem to be using Internet Explorer. <br/>It is recommended that another browser be used to view this page.</div>"); } </script> END_TEXT |
The text between the |
BEGIN_TEXT $BR The graph shown is for the function \(f(x)\). $BR Compute the following quantities: $BR a) \(f($x1)=\) \{ans_rule(35) \} $BR b) \(\lim_{x\to {$x2}^+}f(x)=\) \{ans_rule(35) \} $BR c) \(\lim_{x\to {$x3}^-}f(x)=\) \{ans_rule(35) \} $BR d) \(\lim_{x\to {$x4}}f(x)=\) \{ans_rule(35) \} $BR END_TEXT Context()->normalStrings; |
This is the text section
of the problem. The
Mathematical equations are delimited by
There are a number of variables that set
formatting: |
############################# # # Answers # ## answer evaluators ANS( $correctAnswer1->cmp() ); #checks AnSwEr00001 ANS( $correctAnswer2->cmp() ); #checks AnSwEr00002 ANS( $correctAnswer3->cmp() ); #checks AnSwEr00003 ANS(num_cmp($correctAnswer4, strings=>['DNE'])); #checks AnSwEr00004 ENDDOCUMENT(); |
This is the answer
section of the problem. The problem answer
is set by the The solution is embedded in the applet and becomes available when the due date has passed.
The |
License
The Flash applets developed under DUE-0941388 are protected under the following license: Creative Commons Attribution-NonCommercial 3.0 Unported License.