Difference between revisions of "InverseGraph"
Bmargolius (talk | contribs) |
|||
(20 intermediate revisions by one other user not shown) | |||
Line 5: | Line 5: | ||
<em>This sample problem shows how to use this versatile applet.</em> |
<em>This sample problem shows how to use this versatile applet.</em> |
||
</p> |
</p> |
||
+ | <p style="background-color:#93BED2;border:black solid 1px;padding:3px;">This applet and WeBWorK problem are based upon work supported by the National Science Foundation under Grant Number DUE-0941388.</p> |
||
<p> |
<p> |
||
A standard WeBWorK PG file with an embedded applet has six sections: |
A standard WeBWorK PG file with an embedded applet has six sections: |
||
Line 37: | Line 38: | ||
##ENDDESCRIPTION |
##ENDDESCRIPTION |
||
− | ## KEYWORDS('calculus','derivatives', |
+ | ## KEYWORDS('calculus','derivatives', |
+ | ## 'inverse functions') |
||
## DBsubject('Calculus') |
## DBsubject('Calculus') |
||
Line 86: | Line 87: | ||
loadMacros( |
loadMacros( |
||
"PGstandard.pl", |
"PGstandard.pl", |
||
− | " |
+ | "AppletObjects.pl", |
− | " |
+ | "MathObjects.pl" |
− | "AppletObjects.pl" |
||
); |
); |
||
</pre> |
</pre> |
||
Line 140: | Line 141: | ||
The four variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are the x-coordinates of four points on the graph that the applet will set to be a removable discontinuity, a jump discontinuity or a cusp. The order of these phenomena is random as are the y-values chosen. The x-coordinates must be between -10 and 10. |
The four variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are the x-coordinates of four points on the graph that the applet will set to be a removable discontinuity, a jump discontinuity or a cusp. The order of these phenomena is random as are the y-values chosen. The x-coordinates must be between -10 and 10. |
||
</p> |
</p> |
||
− | |- style=" background-color:#ccffff;" |
||
− | | |
||
+ | |||
+ | |||
Line 157: | Line 158: | ||
$appletName = "InverseGraph"; |
$appletName = "InverseGraph"; |
||
$applet = FlashApplet( |
$applet = FlashApplet( |
||
− | codebase |
+ | codebase |
+ | => findAppletCodebase("$appletName.swf"), |
||
appletName => $appletName, |
appletName => $appletName, |
||
setStateAlias => 'setXML', |
setStateAlias => 'setXML', |
||
getStateAlias => 'getXML', |
getStateAlias => 'getXML', |
||
setConfigAlias => 'setConfig', |
setConfigAlias => 'setConfig', |
||
− | height => ' |
+ | height => '400', |
width => '350', |
width => '350', |
||
bgcolor => '#e8e8e8', |
bgcolor => '#e8e8e8', |
||
Line 171: | Line 172: | ||
| <p>This is the <strong>Applet link section</strong> of the problem. |
| <p>This is the <strong>Applet link section</strong> of the problem. |
||
</p><br> |
</p><br> |
||
− | <p> |
||
+ | If you are embedding |
||
− | Those portions of the code that begin |
||
+ | a different applet, from the InverseGraph |
||
− | the line with <code>#</code> |
||
− | are comments and can be omitted or |
||
− | replaced with comments appropriate |
||
− | to your particular problem. |
||
− | </p> |
||
− | <p>You must include the section that |
||
− | follows <code># Create link to |
||
− | applet</code>. If you are embedding |
||
− | a different applet, from the Graph_Limit |
||
applet, put your applet name in place of |
applet, put your applet name in place of |
||
− | ' |
+ | 'InverseGraph' in the line <code>$appletName =</code> |
− | <code> " |
+ | <code> "InverseGraph";</code>. |
Enter the height of the applet |
Enter the height of the applet |
||
− | in the line <code>height => ' |
+ | in the line <code>height => '400',</code> |
− | in place of |
+ | in place of 400 and the width in the line |
− | <code>width => ' |
+ | <code>width => '350',</code> in place of 350. |
</p><br> |
</p><br> |
||
− | <p>The code <code>qq{ </code><code> |
||
− | getQE("func").value=getApplet</code> |
||
− | <code>("$appletName").getf_list($x1,"function");</code><code> |
||
− | getQE("rlimit").value=getApplet</code> |
||
− | <code>("$appletName").getf_list($x2,"rightlimit");</code><code> |
||
− | getQE("llimit").value=getApplet</code> |
||
− | <code>("$appletName").getf_list($x3,"leftlimit");</code><code> |
||
− | getQE("limit").value=getApplet</code> |
||
− | <code>("$appletName").getf_list($x4,"limit");</code><code> |
||
− | }</code> |
||
− | is called when the 'Submit Answers' |
||
− | button in the problem is pressed. |
||
− | There is an external interface function |
||
− | designed inside the applet. The function |
||
− | name is 'getf_list'. These lines of code |
||
− | call the function with javascript. |
||
− | <code>getf_list</code>, takes two arguments: |
||
− | the x-coordinate of a point, and a string |
||
− | value. The string may be any of the |
||
− | following four alternatives: "function", |
||
− | "rightlimit", "leftlimit", "limit". |
||
− | <code>getf_list</code> returns either |
||
− | the value of the function at the x-coordinate, |
||
− | or the specified limit. The line <code> |
||
− | getQE("func").value=getApplet</code> |
||
− | <code>("$appletName").getf_list($x1,"function");</code> |
||
− | gets the value of the function at <code>$x1</code> |
||
− | and stores this value in the hidden javascript |
||
− | form field named "func".</p> |
||
|- style=" background-color:#ccffff;" |
|- style=" background-color:#ccffff;" |
||
| <pre> |
| <pre> |
||
Line 226: | Line 189: | ||
################################### |
################################### |
||
− | $applet->configuration(qq{ |
+ | $applet->configuration(qq{ |
− | + | <XML><Vars func = '$func'/></XML>}); |
|
+ | $applet->initialState(qq{ |
||
+ | <XML><Vars func = '$func'/></XML>}); |
||
</pre> |
</pre> |
||
− | | <p> The lines <code>$applet->configuration</code> |
+ | | <p> The lines <code>$applet->configuration(qq{<XML><Vars func = '$func'/></XML>});</code> |
− | <code>(qq{< |
+ | and <code>$applet->initialState(qq{<XML><Vars func = '$func'/></XML>});</code> |
− | + | configure the applet. |
|
− | <code><seed>$problemSeed</seed></code> |
||
− | <code><xlist x1='$x1' x2='$x2'</code> |
||
− | <code> x3='$x3' x4='$x4' /></code> |
||
− | <code></xml>});</code> and <code>$applet</code> |
||
− | <code>->initialState</code><code>(qq{<xml></code> |
||
− | <code><hintState>$hintState</hintState></code> |
||
− | <code><qtype>$qtype</qtype></code><code><seed>$problemSeed</seed></code> |
||
− | <code><xlist x1='$x1' x2='$x2'</code><code> x3='$x3' x4='$x4' /></code> |
||
− | <code></xml>});</code> configure the applet. |
||
The configuration of the applet is done in xml. |
The configuration of the applet is done in xml. |
||
− | The |
+ | The variable <code>$func</code> is passed to the |
− | + | applet and set as the function to be graphed. |
|
− | <code>$qtype</code> and the problem seed is the |
||
− | WeBWorK environmental variable <code>$problemSeed</code>. |
||
− | The variables <code>$x1</code>, <code>$x2</code>, |
||
− | <code>$x3</code> and <code>$x4</code> are also |
||
− | passed to the applet. |
||
</p><br> |
</p><br> |
||
− | <p> |
||
+ | |- style=" background-color:#ffdddd;" |
||
− | The hidden form fields are created in the code block: |
||
− | <code> |
||
− | TEXT(MODES(TeX=>"", HTML=><<'END_TEXT')); |
||
− | <input type="hidden"</code> |
||
− | <code> name="func" id="func" /></code> |
||
− | <code> |
||
− | <input type="hidden"</code> |
||
− | <code> name="llimit" id="llimit" /></code> |
||
− | <code> |
||
− | <input type="hidden"</code> |
||
− | <code> name="rlimit" id="rlimit" /></code> |
||
− | <code> |
||
− | <input type="hidden"</code> |
||
− | <code> name="limit" id="limit" /></code> |
||
− | <code> |
||
− | END_TEXT |
||
− | </code> |
||
− | The line <code>TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));</code> |
||
− | prevents the hidden fields from becoming part of the hard copy. |
||
− | </p><br> |
||
− | |||
− | <p> |
||
− | <code>TEXT( MODES(TeX=>'object code',</code> |
||
− | <code> HTML=>$applet->insertAll(</code> |
||
− | <code> |
||
− | debug=>0,</code> |
||
− | <code> |
||
− | includeAnswerBox=>0,</code> |
||
− | <code> |
||
− | reinitialize_button=>$permissionLevel>=10,</code> |
||
− | <code> |
||
− | )));</code> actually embeds the applet |
||
− | in the WeBWorK problem. |
||
− | </p><br> |
||
− | <p>When the submit button is pressed, the |
||
− | hidden form fields defined in this block are |
||
− | filled with information from the applet. |
||
− | </p> |
||
− | <p> |
||
− | The data from the hidden form fields is used |
||
− | in these simple perl subroutines to define the |
||
− | correct answers to the four questions that are |
||
− | part of this WeBWorK problem.</p> |
||
− | <p>The WeBWorK variable $answerString1 is the |
||
− | content of the hidden form field "func". |
||
− | $correctAnswer1 is the solution to the first |
||
− | question. The solutions for the next two |
||
− | questions are defined in a similar way. |
||
− | The final question also has 'DNE' as a possible |
||
− | correct answer for the student to enter. The |
||
− | way that the applet is designed, the left and |
||
− | right limits always exist.</p> |
||
− | |- style=" background-color:#ccffff;" |
||
| <pre> |
| <pre> |
||
+ | Context()->texStrings; |
||
+ | TEXT(beginproblem()); |
||
− | |||
− | |||
− | </pre> |
||
− | | <p> |
||
− | The text between the <code><script></code> tags detects whether the student is using Internet Explorer. If the student is using this browser, a warning is issued and the student is advised to use another browser. IE mis-sizes the applets. Some will work correctly when displayed at the wrong size, but others will fail. We do not recommend using IE with WeBWorK problems with Flash embedded.</p> |
||
− | |- style=" background-color:#ffdddd;" |
||
− | | <pre> |
||
BEGIN_TEXT |
BEGIN_TEXT |
||
− | |||
− | \{ beginproblem() \} \{ |
||
− | textbook_ref_exact("Rogawski ET 2e", "3.8","9") |
||
− | \} |
||
$PAR |
$PAR |
||
− | \{ $applet->insertAll(debug=>0, |
+ | \{ $applet->insertAll(debug=>0, |
+ | includeAnswerBox=>0, |
||
+ | reinitialize_button=>0,) \} |
||
$PAR |
$PAR |
||
− | Let \(g(x)\) be the inverse of |
+ | Let \(g(x)\) be the inverse of |
− | + | \(f(x)=$dispArray[$rand]\). Calculate |
|
+ | \(g($yval)\) [without finding a formula |
||
+ | for g(x)] and then calculate \(g'($yval)\). |
||
$PAR \(g($yval)\) = \{ans_rule()\} |
$PAR \(g($yval)\) = \{ans_rule()\} |
||
Line 365: | Line 266: | ||
This is the <strong>answer</strong> |
This is the <strong>answer</strong> |
||
section of the problem. The problem answer |
section of the problem. The problem answer |
||
− | is set by the <code>ANS( |
+ | is set by the <code>ANS(num_cmp($ans1));</code>, |
− | <code>ANS( |
+ | and <code>ANS(num_cmp($ans2));</code> lines. |
− | <code>ANS( $correctAnswer3->cmp() );</code>, |
||
− | and <code>ANS(num_cmp</code> |
||
− | <code>($correctAnswer4,</code> |
||
− | <code>strings=>['DNE']));</code> lines. |
||
These compare the student's answer with the |
These compare the student's answer with the |
||
− | answers returned from the applet. Answers 1-3 |
||
+ | correct answers determined in the problem set-up section. |
||
− | follow the same basic structure. The fourth |
||
− | answer allows for either a numeric answer or |
||
− | the string 'DNE' for limits that do not exist. |
||
− | </p> |
||
− | <p> |
||
− | The solution is embedded in the applet and |
||
− | becomes available when the due date has passed. |
||
</p> |
</p> |
||
<p> |
<p> |
Latest revision as of 11:31, 12 June 2013
Flash Applets embedded in WeBWorK questions GraphLimit Example
Sample Problem with InverseGraph.swf embedded
This sample problem shows how to use this versatile applet.
This applet and WeBWorK problem are based upon work supported by the National Science Foundation under Grant Number DUE-0941388.
A standard WeBWorK PG file with an embedded applet has six sections:
- A tagging and description section, that describes the problem for future users and authors,
- An initialization section, that loads required macros for the problem,
- A problem set-up section that sets variables specific to the problem,
- An Applet link section that inserts the applet and configures it, (this section is not present in WeBWorK problems without an embedded applet)
- A text section, that gives the text that is shown to the student, and
- An answer and solution section, that specifies how the answer(s) to the problem is(are) marked for correctness, and gives a solution that may be shown to the student after the problem set is complete.
The sample file attached to this page shows this; below the file is shown to the left, with a second column on its right that explains the different parts of the problem that are indicated above. A screenshot of the applet embedded in this WeBWorK problem is shown below:
Other useful links:
Flash Applets Tutorial
Things to consider in developing WeBWorK problems with embedded Flash applets
PG problem file | Explanation |
---|---|
##DESCRIPTION ## Inverse Graph ## Sample problem to illustrate ## the use of the InverseGraph.swf ## Flash applet ##ENDDESCRIPTION ## KEYWORDS('calculus','derivatives', ## 'inverse functions') ## DBsubject('Calculus') ## DBchapter('Differentiation') ## DBsection('Derivatives of Inverse Functions') ## Date('8/16/2011') ## Author('Alex Yates') ## Institution('Cleveland State University') ## TitleText1('Calculus: Early Transcendentals 2e') ## EditionText1(2) ## AuthorText1('Rogawski') ## Section1('3.8') ## Problem1('9') ########################################### # This work is supported in part by # the National Science Foundation # under the grant DUE-0941388. ########################################### |
This is the tagging and description section of the problem. Note that any line that begins with a "#" character is a comment for other authors who read the problem, and is not interpreted by WeBWorK. The description is provided to give a quick summary of the problem so that someone reading it later knows what it does without having to read through all of the problem code. All of the tagging information exists to allow the problem to be easily indexed. Because this is a sample problem there isn't a textbook per se, and we've used some default tagging values. There is an on-line list of current chapter and section names and a similar list of keywords. The list of keywords should be comma separated and quoted (e.g., KEYWORDS('calculus','derivatives')). |
DOCUMENT(); loadMacros( "PGstandard.pl", "AppletObjects.pl", "MathObjects.pl" ); |
This is the initialization section of the problem. The first executed line of the problem must be the
The |
################################### # Setup ################################### @funcArray = ( "1/4*x^3-1", "x+cos(x)", "1/4*x^3-2*x", "4*atan(x)", "x*atan(x)", "1/2*x^(2)", "x-(x/2)^3" ); @dispArray = ( "\frac{1}{4} x^3 - 1", "x+\cos(x)", "\frac{1}{4} x^3 - 2 x", "4 \tan^{-1}(x)", "x \tan^{-1}(x)", "\frac{1}{2}x^2", "x-(\frac{1}{2}x)^3" ); $rand = random(0,6,1); $func = @funcArray[$rand]; $f = Formula($func); $yval = random(1,3,1); $ans1 = $f->substitute(x=>$yval); $fder = $f->D(); $ans2 = 1/($fder->substitute(x=>$yval)); |
The GraphLimits.swf applet will accept four different question types, specified with the
The applet has solution/hint information embedded in it. When
The four variables
|
################################### # Create link to applet ################################### $appletName = "InverseGraph"; $applet = FlashApplet( codebase => findAppletCodebase("$appletName.swf"), appletName => $appletName, setStateAlias => 'setXML', getStateAlias => 'getXML', setConfigAlias => 'setConfig', height => '400', width => '350', bgcolor => '#e8e8e8', debugMode => 0, submitActionScript => '', ); |
This is the Applet link section of the problem. If you are embedding
a different applet, from the InverseGraph
applet, put your applet name in place of
'InverseGraph' in the line |
################################### # Configure applet ################################### $applet->configuration(qq{ <XML><Vars func = '$func'/></XML>}); $applet->initialState(qq{ <XML><Vars func = '$func'/></XML>}); |
The lines and |
Context()->texStrings; TEXT(beginproblem()); BEGIN_TEXT $PAR \{ $applet->insertAll(debug=>0, includeAnswerBox=>0, reinitialize_button=>0,) \} $PAR Let \(g(x)\) be the inverse of \(f(x)=$dispArray[$rand]\). Calculate \(g($yval)\) [without finding a formula for g(x)] and then calculate \(g'($yval)\). $PAR \(g($yval)\) = \{ans_rule()\} $PAR \(g'($yval)\) = \{ans_rule()\} END_TEXT |
This is the text section
of the problem. The
Mathematical equations are delimited by
There are a number of variables that set
formatting: |
################################### # Answers ################################### ANS(num_cmp($ans1)); ANS(num_cmp($ans2)); ENDDOCUMENT(); |
This is the answer
section of the problem. The problem answer
is set by the
The |
License
The Flash applets developed under DUE-0941388 are protected under the following license: Creative Commons Attribution-NonCommercial 3.0 Unported License.