Difference between revisions of "ImplicitPlane1"

From WeBWorK_wiki
Jump to navigation Jump to search
(Removes the AnswerFormatHelp macro and some other cleanup.)
Line 43: Line 43:
   
 
loadMacros(
 
loadMacros(
"PGstandard.pl",
+
'PGstandard.pl',
"MathObjects.pl",
+
'MathObjects.pl',
"parserImplicitPlane.pl",
+
'parserImplicitPlane.pl',
"parserVectorUtils.pl",
+
'parserVectorUtils.pl',
"AnswerFormatHelp.pl",
+
'PGML.pl',
  +
'PGcourse.pl'
 
);
 
);
   
Line 56: Line 56:
 
<p>
 
<p>
 
<b>Initialization:</b>
 
<b>Initialization:</b>
  +
  +
* The <tt>parserVectorUtils.pl</tt> macro is used for the <tt>non_zero_point3D</tt> function below.
  +
* The <tt>parserImplicitPlane.pl</tt> macro includes the context and the <tt>ImplicitPlane</tt> function to parse and create implicit planes.
 
</p>
 
</p>
 
</td>
 
</td>
Line 66: Line 69:
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context("ImplicitPlane");
+
Context('ImplicitPlane');
  +
Context()->variables->are(x=>'Real',y=>'Real', z=> 'Real');
   
 
$A = non_zero_point3D(-5,5,1);
 
$A = non_zero_point3D(-5,5,1);
Line 72: Line 75:
   
 
$answer1 = ImplicitPlane($A,$N);
 
$answer1 = ImplicitPlane($A,$N);
 
  +
$answer2 = ImplicitPlane('4x+3y=12');
Context()->variables->are(x=>"Real",y=>"Real");
 
  +
$answer3 = ImplicitPlane('x=3');
 
$answer2 = ImplicitPlane("4x+3y=12");
 
 
$answer3 = ImplicitPlane("x=3");
 
 
</pre>
 
</pre>
 
</td>
 
</td>
Line 96: Line 95:
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML
BEGIN_TEXT
 
  +
a. Enter an equation for the plane through the point [` [$A] `] and perpendicular to [` [$N] `].
(a) Enter an equation for the plane through
 
the point \( $A \) and perpendicular to
 
\( $N \).
 
$BR
 
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("equations") \}
 
$BR
 
$BR
 
(b) Enter an equation for the line in the
 
xy-plane with x-intercept \( 3 \) and
 
y-intercept \( 4 \).
 
$BR
 
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("equations") \}
 
$BR
 
$BR
 
(c) Enter an equation for the vertical line
 
in the xy-plane through the point \( (3,1) \).
 
$BR
 
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("equations") \}
 
END_TEXT
 
Context()->normalStrings;
 
</pre>
 
<td style="background-color:#ffcccc;padding:7px;">
 
<p>
 
<b>Main Text:</b>
 
</p>
 
</td>
 
</tr>
 
   
<!-- Answer evaluation section -->
 
  +
+ [______________]{$answer1}
   
<tr valign="top">
 
  +
b. Enter an equation for the line in the [` xy `]-plane with [` x `]-intercept [` 3 `] and [` y `]-intercept [` 4 `].
<td style="background-color:#eeddff;border:black 1px dashed;">
 
  +
<pre>
 
  +
+ [______________]{$answer2}
$showPartialCorrectAnswers = 1;
 
  +
  +
c. Enter an equation for the vertical line in the [` xy `]-plane through the point [` (3,1) `].
   
ANS( $answer1->cmp() );
 
  +
+ [______________]{$answer3}
ANS( $answer2->cmp() );
 
  +
ANS( $answer3->cmp() );
 
  +
[@ helpLink('equation') @]*
  +
END_PGML
 
</pre>
 
</pre>
<td style="background-color:#eeccff;padding:7px;">
+
<td style="background-color:#ffcccc;padding:7px;">
 
<p>
 
<p>
<b>Answer Evaluation:</b>
+
<b>Main Text:</b>
 
</p>
 
</p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<!-- Solution section -->
 
   
 
<tr valign="top">
 
<tr valign="top">
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML_SOLUTION
BEGIN_SOLUTION
 
 
Solution explanation goes here.
 
Solution explanation goes here.
END_SOLUTION
 
  +
END_PGML_SOLUTION</pre>
Context()->normalStrings;
 
 
COMMENT('MathObject version.');
 
 
ENDDOCUMENT();
 
</pre>
 
 
<td style="background-color:#ddddff;padding:7px;">
 
<td style="background-color:#ddddff;padding:7px;">
 
<p>
 
<p>

Revision as of 11:02, 10 March 2023

Answer is an Equation for a Line or Plane

Click to enlarge

This PG code shows how to define an answer that is a line or plane.


Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();   

loadMacros(
  'PGstandard.pl',
  'MathObjects.pl',
  'parserImplicitPlane.pl',
  'parserVectorUtils.pl',
  'PGML.pl',
  'PGcourse.pl'
);     

TEXT(beginproblem());

Initialization:

  • The parserVectorUtils.pl macro is used for the non_zero_point3D function below.
  • The parserImplicitPlane.pl macro includes the context and the ImplicitPlane function to parse and create implicit planes.

Context('ImplicitPlane');
Context()->variables->are(x=>'Real',y=>'Real', z=> 'Real');

$A = non_zero_point3D(-5,5,1);
$N = non_zero_vector3D(-5,5,1);

$answer1 = ImplicitPlane($A,$N);
$answer2 = ImplicitPlane('4x+3y=12');
$answer3 = ImplicitPlane('x=3');

Setup: The first answer is a standard mulitivariable calculus question. There are several different ways to specify the input to ImplicitPlane, which are detailed in the POD documentation. It is also possible to do some more complicated manipulations with the vectors and points, which is detailed in the problem techniques section.

When the ImplicitPlane context has only two variables, it rephrases error messages in terms of lines. If you want students to be able to enter an equation for a line in the most general form, or if you have a vertical line to check (or just a constant equation such as x=3), you can use the ImplicitPlane context to reliably check these answers.

BEGIN_PGML
a. Enter an equation for the plane through the point [` [$A] `] and perpendicular to [` [$N] `].

    + [______________]{$answer1}

b. Enter an equation for the line in the [` xy `]-plane with [` x `]-intercept [` 3 `] and [` y `]-intercept [` 4 `].

    + [______________]{$answer2}

c. Enter an equation for the vertical line in the [` xy `]-plane through the point [` (3,1) `].

    + [______________]{$answer3}

[@ helpLink('equation') @]*
END_PGML

Main Text:

BEGIN_PGML_SOLUTION
Solution explanation goes here.
END_PGML_SOLUTION

Solution:

Templates by Subject Area