Difference between revisions of "FactoringAndExpanding"
(added historical tag and gave updated problem link) |
|||
(30 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | <h2>Factored Answers</h2> |
||
+ | {{historical}} |
||
+ | |||
+ | <p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/problem-techniques/FactoringAndExpanding.html a newer version of this problem]</p> |
||
+ | <h2>Factoring and Expanding Polynomials</h2> |
||
<!-- Header for these sections -- no modification needed --> |
<!-- Header for these sections -- no modification needed --> |
||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
− | <em>This is the PG code to check answers that require students to factor |
+ | <em>This is the PG code to check answers that require students to factor or expand a polynomial expression.</em> |
− | < |
+ | </p> |
− | + | ||
− | + | ||
+ | <ul type="square"> |
||
+ | <li><b>Example 1:</b> (Recommended) Using the PolynomialFactors context and the LimitedPowers context for factoring, and the LimitedPolynomial context for expanding.</li> |
||
+ | <li><b>Example 2:</b> Using adaptive parameters and a MultiAnswer for factoring and the LimitedPolynomial context for expanding.</li> |
||
+ | </ul> |
||
+ | |||
+ | |||
+ | <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
+ | <b>Example 1:</b> (Recommended) Using the PolynomialFactors context and the LimitedPowers context for factoring and the LimitedPolynomial context for factoring. |
||
</p> |
</p> |
||
+ | |||
+ | <p style="text-align:center;"> |
||
+ | [[IndexOfProblemTechniques|Problem Techniques Index]] |
||
+ | </p> |
||
+ | |||
+ | <table cellspacing="0" cellpadding="2" border="0"> |
||
+ | |||
+ | <tr valign="top"> |
||
+ | <th> PG problem file </th> |
||
+ | <th> Explanation </th> |
||
+ | </tr> |
||
+ | |||
+ | <!-- Load specialized macro files section --> |
||
+ | |||
+ | <tr valign="top"> |
||
+ | <td style="background-color:#ddffdd;border:black 1px dashed;"> |
||
+ | <pre> |
||
+ | DOCUMENT(); |
||
+ | loadMacros( |
||
+ | "PGstandard.pl", |
||
+ | "MathObjects.pl", |
||
+ | "contextLimitedPolynomial.pl", |
||
+ | "contextPolynomialFactors.pl", |
||
+ | "contextLimitedPowers.pl", |
||
+ | ); |
||
+ | |||
+ | TEXT(beginproblem()); |
||
+ | </pre> |
||
+ | </td> |
||
+ | <td style="background-color:#ccffcc;padding:7px;"> |
||
+ | <p> |
||
+ | <b>Initialization:</b> |
||
+ | We need all of these macros. |
||
+ | </p> |
||
+ | </td> |
||
+ | </tr> |
||
+ | |||
+ | <!-- Setup section --> |
||
+ | |||
+ | <tr valign="top"> |
||
+ | <td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
+ | <pre> |
||
+ | # |
||
+ | # Vertex form |
||
+ | # |
||
+ | Context("Numeric"); |
||
+ | $n = list_random(4,6); |
||
+ | $a = random(2,4,1); |
||
+ | $b = ($a+$n); |
||
+ | $h = ($b-$a)/2; |
||
+ | $k = $h**2+$a*$b; |
||
+ | $vertexform = Compute("(x-$h)^2-$k"); |
||
+ | |||
+ | # |
||
+ | # Expanded form |
||
+ | # |
||
+ | Context("LimitedPolynomial-Strict"); |
||
+ | $p[0] = $h**2 - $k; |
||
+ | $p[1] = 2*$h; |
||
+ | $expandedform = Formula("x^2 - $p[1] x + $p[0]")->reduce; |
||
+ | |||
+ | # |
||
+ | # Factored form |
||
+ | # |
||
+ | Context("PolynomialFactors-Strict"); |
||
+ | Context()->flags->set(singleFactors=>0); |
||
+ | LimitedPowers::OnlyIntegers( |
||
+ | minPower => 0, maxPower => 1, |
||
+ | message => "either 0 or 1", |
||
+ | ); |
||
+ | $factoredform = Compute("(x+$a)(x-$b)"); |
||
+ | </pre> |
||
+ | </td> |
||
+ | <td style="background-color:#ffffcc;padding:7px;"> |
||
+ | <p> |
||
+ | <b>Setup:</b> |
||
+ | To construct this quadratic, we choose a nice factored form <code>(x+$a)(x-$b)</code> and from it we construct its vertex form (a(x-h)^2+k) and expanded form (ax^2+bx+c). |
||
+ | </p> |
||
+ | <p> |
||
+ | For the expanded form we use the <code>LimitedPolynomial-Strict</code> context, construct the coefficients <code>$p[0]</code> and <code>$p[1]</code> as Perl reals, and then construct <code>$expandedform</code> using these pre-computed coefficients. This is because the LimitedPolynomial-Strict context balks at answers that are not already simplified completely. |
||
+ | </p> |
||
+ | <p> |
||
+ | For the factored form we need to change to the <code>PolynomialFactors-Strict</code> context and restrict the allowed powers to either 0 or 1 using the <code>LimitedPowers::OnlyIntegers</code> block of code. Note: restricting all exponents to 0 or 1 means that repeated factors will have to be entered in the form <code>k(ax+b)(ax+b)</code> instead of <code>k(ax+b)^2</code>. Also, restricting all exponents to 0 or 1 means that the polynomial must factor as a product of linear factors (no irreducible quadratic factors can appear). Of course, we could allow exponents to be 0, 1, or 2, but then students would be allowed to enter <i>reducible</i> quadratic factors. There are no restrictions on the coefficients, i.e., the quadratic could have any nonzero leading coefficient. We set <code>singleFactors=>0</code> so that repeated, non-simplified factors do not generate errors. |
||
+ | </p> |
||
+ | </td> |
||
+ | </tr> |
||
+ | |||
+ | <!-- Question text section --> |
||
+ | |||
+ | <tr valign="top"> |
||
+ | <td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
+ | <pre> |
||
+ | Context()->texStrings; |
||
+ | BEGIN_TEXT |
||
+ | The quadratic expression \( $vertexform \) |
||
+ | is written in vertex form. |
||
+ | $BR |
||
+ | $BR |
||
+ | (a) Write the expression in expanded form |
||
+ | \( ax^2 + bx + c \). |
||
+ | $BR |
||
+ | \{ ans_rule(30) \} |
||
+ | $BR |
||
+ | $BR |
||
+ | (b) Write the expression in factored form |
||
+ | \( k(ax+b)(cx+d) \). |
||
+ | $BR |
||
+ | \{ ans_rule(30)\} |
||
+ | END_TEXT |
||
+ | Context()->normalStrings; |
||
+ | </pre> |
||
+ | <td style="background-color:#ffcccc;padding:7px;"> |
||
+ | <p> |
||
+ | <b>Main Text:</b> |
||
+ | Everything here is as usual. To help students understand how to format their answers, we give examples <code>ax^2+bx+c</code> and <code>k(ax+b)(cx+d)</code> of what the answers should look like. |
||
+ | </p> |
||
+ | </td> |
||
+ | </tr> |
||
+ | |||
+ | <!-- Answer section --> |
||
+ | |||
+ | <tr valign="top"> |
||
+ | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
+ | <pre> |
||
+ | $showPartialCorrectAnswers = 1; |
||
+ | |||
+ | ANS( $expandedform->cmp() ); |
||
+ | ANS( $factoredform->cmp() ); |
||
+ | |||
+ | ENDDOCUMENT(); |
||
+ | </pre> |
||
+ | <td style="background-color:#eeccff;padding:7px;"> |
||
+ | <p> |
||
+ | <b>Answer Evaluation:</b> |
||
+ | Everything is as expected. |
||
+ | </p> |
||
+ | </td> |
||
+ | </tr> |
||
+ | </table> |
||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
+ | <b>Example 2:</b> Using adaptive parameters and a MultiAnswer for factoring and the LimitedPolynomial context for expanding. |
||
+ | </p> |
||
+ | |||
<p style="text-align:center;"> |
<p style="text-align:center;"> |
||
Line 104: | Line 257: | ||
<p> |
<p> |
||
<b>Setup:</b> |
<b>Setup:</b> |
||
− | This is a standard factoring problem for a non-monic polynomial (where the leading coefficient is not 1 or -1). Since it is possible to factor <code>16x^2 + 48 x + 36</code> as <code>(2x+3)(8x+12)</code> or <code>(8x+12)(2x+3)</code> or <code>(4x+6)(4x+6)</code>, we need to allow any of these three factorizations to be marked correct. The <code>MultiAnswer</code> answer checker allows us to collect student answers from several answer blanks and perform answer evaluation on several answer blanks simultaneously, in particular allowing the factors to be entered in answer blanks in either order. The adaptive parameter allows us to effectively deal with |
+ | This is a standard factoring problem for a non-monic polynomial (where the leading coefficient is not 1 or -1). Since it is possible to factor <code>16x^2 + 48 x + 36</code> as <code>(2x+3)(8x+12)</code> or <code>(8x+12)(2x+3)</code> or <code>(4x+6)(4x+6)</code>, we need to allow any of these three factorizations to be marked correct. The <code>MultiAnswer</code> answer checker allows us to collect student answers from several answer blanks and perform answer evaluation on several answer blanks simultaneously, in particular allowing the factors to be entered in answer blanks in either order. The adaptive parameter allows us to effectively deal with passing a constant between the factors. |
</p> |
</p> |
||
<p> |
<p> |
||
The <code>MultiAnswer</code> makes sure that neither factor is constant. Then, it creates a copy of the current context as a local context, and creates an adaptive parameter in this local context. The adaptive parameter will allow us to determine whether each factor in the student's answer is equal to a constant multiple of some factor of the correct answer. |
The <code>MultiAnswer</code> makes sure that neither factor is constant. Then, it creates a copy of the current context as a local context, and creates an adaptive parameter in this local context. The adaptive parameter will allow us to determine whether each factor in the student's answer is equal to a constant multiple of some factor of the correct answer. |
||
+ | </p> |
||
+ | <p> |
||
+ | For more details on adaptive parameters and MultiAnswer, please see [http://webwork.maa.org/wiki/AdaptiveParameters AdaptiveParameters] and [http://webwork.maa.org/wiki/MultiAnswerProblems MultiAnswerProblems]. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 166: | Line 322: | ||
[[Category:Problem Techniques]] |
[[Category:Problem Techniques]] |
||
+ | |||
+ | |||
+ | |||
+ | <ul> |
||
+ | <li>POD documentation: [http://webwork.maa.org/pod/pg/macros/contextLimitedPolynomial.html contextLimitedPolynomial.pl]</li> |
||
+ | <li>PG macro: [http://webwork.maa.org/viewvc/system/trunk/pg/macros/contextLimitedPolynomial.pl?view=log contextLimitedPolynomial.pl]</li> |
||
+ | </ul> |
||
+ | |||
+ | |||
+ | <ul> |
||
+ | <li>POD documentation: [http://webwork.maa.org/pod/pg/macros/contextPolynomialFactors.html contextPolynomialFactors.pl]</li> |
||
+ | <li>PG macro: [http://webwork.maa.org/viewvc/system/trunk/pg/macros/contextPolynomialFactors.pl?view=log contextPolynomialFactors.pl]</li> |
||
+ | </ul> |
||
+ | |||
+ | |||
+ | <ul> |
||
+ | <li>POD documentation: [http://webwork.maa.org/pod/pg/macros/contextLimitedPowers.html contextLimitedPowers.pl]</li> |
||
+ | <li>PG macro: [http://webwork.maa.org/viewvc/system/trunk/pg/macros/contextLimitedPowers.pl?view=log contextLimitedPowers.pl]</li> |
||
+ | </ul> |
||
<ul> |
<ul> |
||
− | <li>POD documentation: [http://webwork.maa.org/ |
+ | <li>POD documentation: [http://webwork.maa.org/pod/pg/macros/parserMultiAnswer.html parserMultiAnswer.pl]</li> |
− | <li>PG macro: [http:// |
+ | <li>PG macro: [http://webwork.maa.org/viewvc/system/trunk/pg/macros/parserMultiAnswer.pl?view=log parserMultiAnswer.pl]</li> |
</ul> |
</ul> |
Latest revision as of 08:43, 28 June 2023
This problem has been replaced with a newer version of this problem
Factoring and Expanding Polynomials
This is the PG code to check answers that require students to factor or expand a polynomial expression.
- Example 1: (Recommended) Using the PolynomialFactors context and the LimitedPowers context for factoring, and the LimitedPolynomial context for expanding.
- Example 2: Using adaptive parameters and a MultiAnswer for factoring and the LimitedPolynomial context for expanding.
Example 1: (Recommended) Using the PolynomialFactors context and the LimitedPowers context for factoring and the LimitedPolynomial context for factoring.
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "contextLimitedPolynomial.pl", "contextPolynomialFactors.pl", "contextLimitedPowers.pl", ); TEXT(beginproblem()); |
Initialization: We need all of these macros. |
# # Vertex form # Context("Numeric"); $n = list_random(4,6); $a = random(2,4,1); $b = ($a+$n); $h = ($b-$a)/2; $k = $h**2+$a*$b; $vertexform = Compute("(x-$h)^2-$k"); # # Expanded form # Context("LimitedPolynomial-Strict"); $p[0] = $h**2 - $k; $p[1] = 2*$h; $expandedform = Formula("x^2 - $p[1] x + $p[0]")->reduce; # # Factored form # Context("PolynomialFactors-Strict"); Context()->flags->set(singleFactors=>0); LimitedPowers::OnlyIntegers( minPower => 0, maxPower => 1, message => "either 0 or 1", ); $factoredform = Compute("(x+$a)(x-$b)"); |
Setup:
To construct this quadratic, we choose a nice factored form
For the expanded form we use the
For the factored form we need to change to the |
Context()->texStrings; BEGIN_TEXT The quadratic expression \( $vertexform \) is written in vertex form. $BR $BR (a) Write the expression in expanded form \( ax^2 + bx + c \). $BR \{ ans_rule(30) \} $BR $BR (b) Write the expression in factored form \( k(ax+b)(cx+d) \). $BR \{ ans_rule(30)\} END_TEXT Context()->normalStrings; |
Main Text:
Everything here is as usual. To help students understand how to format their answers, we give examples |
$showPartialCorrectAnswers = 1; ANS( $expandedform->cmp() ); ANS( $factoredform->cmp() ); ENDDOCUMENT(); |
Answer Evaluation: Everything is as expected. |
Example 2: Using adaptive parameters and a MultiAnswer for factoring and the LimitedPolynomial context for expanding.
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
We need to include the |
Context("Numeric"); $fac1 = Compute("(2 x + 3)"); $fac2 = Compute("(8 x + 12)"); $multians = MultiAnswer($fac1,$fac2)->with( singleResult => 0, allowBlankAnswers => 0, # singleResult => 1, # separator => " * ", # tex_separator => " \cdot ", checker => sub { my $correct = shift; my $student = shift; my $ansHash = shift; my ($F,$G) = @{$correct}; my ($f,$g) = @{$student}; $ansHash->setMessage(1,"Neither factor can be constant") unless $f->isFormula; $ansHash->setMessage(2,"Neither factor can be constant") unless $g->isFormula; # use an adaptive parameter 'a' my $context = Context()->copy; $context->flags->set(no_parameters=>0); $context->variables->add('a'=>'Parameter'); my $a = Formula($context,'a'); $f = Formula($context,$f); $g = Formula($context,$g); $F = Formula($context,$F); $G = Formula($context,$G); if ( (($a*$F == $f) && ($F*$G == $f*$g)) || (($a*$G == $f) && ($F*$G == $f*$g)) ) { return [1,1]; } elsif (($a*$F == $f) || ($a*$G == $f)) { return [1,0]; } elsif (($a*$F == $g) || ($a*$G == $g)) { return [0,1]; } else { return [0,0]; } } ); |
Setup:
This is a standard factoring problem for a non-monic polynomial (where the leading coefficient is not 1 or -1). Since it is possible to factor
The For more details on adaptive parameters and MultiAnswer, please see AdaptiveParameters and MultiAnswerProblems. |
Context()->texStrings; BEGIN_TEXT Factor the following expression. $BR $BR \( 16 t^2 + 48 t + 36 = \big( \) \{$multians->ans_rule(10)\} \( \big) \big( \) \{$multians->ans_rule(10)\} \( \big) \) END_TEXT Context()->normalStrings; |
Main Text:
Each answer blank must be a method of the |
$showPartialCorrectAnswers = 1; install_problem_grader(~~&std_problem_grader); ANS( $multians->cmp() ); ENDDOCUMENT(); |
Answer Evaluation:
Everything is as expected. We give students feedback on whether their answers are correct by using |
- POD documentation: contextLimitedPolynomial.pl
- PG macro: contextLimitedPolynomial.pl
- POD documentation: contextPolynomialFactors.pl
- PG macro: contextPolynomialFactors.pl
- POD documentation: contextLimitedPowers.pl
- PG macro: contextLimitedPowers.pl
- POD documentation: parserMultiAnswer.pl
- PG macro: parserMultiAnswer.pl