Difference between revisions of "RiemannSums1"

From WeBWorK_wiki
Jump to navigation Jump to search
(add historical tag and give links to newer problems.)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  +
{{historical}}
  +
  +
<p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/RiemannSums.html a newer version of this problem]</p>
  +
  +
 
<h2>Dynamically Generated Graphs with Riemann Sums</h2>
 
<h2>Dynamically Generated Graphs with Riemann Sums</h2>
   
[[File:RiemannSums1.png|300px|thumb|right|Click to enlarge]]
+
[[File:RiemannSums1.png|400px|thumb|right|Click to enlarge]]
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;">
+
<p style="background-color:#f9f9f9;border:black solid 1px;padding:3px;">
 
This PG code shows how to make dynamically generated graphs with shaded (filled) Riemann sums.
 
This PG code shows how to make dynamically generated graphs with shaded (filled) Riemann sums.
 
</p>
 
</p>
* Download file: [[File:RiemannSums1.txt]] (change the file extension from txt to pg when you save it)
 
  +
* File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/RiemannSums1.pg FortLewis/Authoring/Templates/IntegralCalc/RiemannSums1.pg]
* File location in NPL: <code>FortLewis/Authoring/Templates/IntegralCalc/RiemannSums1.pg</code>
+
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/RiemannSums1_PGML.pg FortLewis/Authoring/Templates/IntegralCalc/RiemannSums1_PGML.pg]
 
   
 
<br clear="all" />
 
<br clear="all" />
Line 255: Line 260:
 
Context()->texStrings;
 
Context()->texStrings;
 
BEGIN_SOLUTION
 
BEGIN_SOLUTION
${PAR}SOLUTION:${PAR}
 
 
(A) The left endpoint Riemann sum is
 
(A) The left endpoint Riemann sum is
 
\( f($x[0]) \cdot 0.5 + f($x[1]) \cdot 0.5 + \cdots + f($x[$n-1]) \cdot 0.5
 
\( f($x[0]) \cdot 0.5 + f($x[1]) \cdot 0.5 + \cdots + f($x[$n-1]) \cdot 0.5
Line 285: Line 289:
   
 
[[Category:Top]]
 
[[Category:Top]]
[[Category:Authors]]
+
[[Category:Sample Problems]]
  +
[[Category:Subject Area Templates]]

Latest revision as of 05:11, 18 July 2023

This article has been retained as a historical document. It is not up-to-date and the formatting may be lacking. Use the information herein with caution.

This problem has been replaced with a newer version of this problem


Dynamically Generated Graphs with Riemann Sums

Click to enlarge

This PG code shows how to make dynamically generated graphs with shaded (filled) Riemann sums.


Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();

loadMacros(
"PGstandard.pl",
"PGchoicemacros.pl",
"PGgraphmacros.pl",
"MathObjects.pl",
"weightedGrader.pl",
"unionTables.pl",
);

TEXT(beginproblem());

install_weighted_grader();

$refreshCachedImages = 1;
$showPartialCorrectAnswers = 1;

Initialization:

# Construct a graph for the left endpoint Riemann sum,
# define the function to be graphed, and add it to the graph
$graphL = init_graph(-1,-1,9,9,ticks=>[10,10],axes=>[0,0],pixels=>[250,250]);
$graphL->lb('reset');
foreach my $i (1..8) {
  $graphL->lb( new Label($i,-0.5,$i, 'black','center','middle'));
  $graphL->lb( new Label(-0.5,$i,$i, 'black','center','middle'));
}
$graphL->lb(new Label ( 8.5,0.25,'x','black','center','middle'));
$graphL->lb(new Label ( 0.25,8.5,'y','black','center','middle'));


$c = random(8,12,1); # a constant for scaling the function
$f = FEQ("x**2/$c for x in <-1,9> using color:blue and weight:2");
$ftex = "\frac{x^2}{$c}";
# the parentheses around $fRefL are necessary
($fRefL) = plot_functions( $graphL, $f );


# Generate arrays of x and y values for the Riemann sum.
# There are n+1 entries in each array so that we can use
# only one pair of arrays for both the left and the right 
# endpoint Riemann sums.
$a = random(2,4,1); # left endpoint of interval
$b = $a+2; # right endpoint of interval
$n = 4; # number of rectangles
$deltax = ($b - $a)/$n;
foreach $k (0..$n) { $x[$k] = $a + $k * $deltax; }
foreach $k (0..$n) { $y[$k] = &{$fRefL->rule}($x[$k]); }


# Graph the left endpoint Riemann sum
$lightblue = $graphL->im->colorAllocate(148,201,255);
$darkblue = $graphL->im->colorAllocate(100,100,255);
# Create arrays of pixel references for x and y values
foreach $k (0..$n) {
   $xpixL[$k] = $graphL->ii($x[$k]);
   $ypixL[$k] = $graphL->jj($y[$k]);
}
$xaxisL = $graphL->jj(0);
# Plot the rectangles in the Riemann sum
foreach $k (0..$n-1) {
   $graphL->im->filledRectangle($xpixL[$k],$ypixL[$k],$xpixL[$k+1],$xaxisL,$lightblue);
   $graphL->im->rectangle($xpixL[$k],$ypixL[$k],$xpixL[$k+1],$xaxisL,$darkblue);
}




# Construct a graph for the right endpoint Riemann sum
$graphR = init_graph(-1,-1,9,9,ticks=>[10,10],axes=>[0,0],pixels=>[250,250]);
$graphR->lb('reset');
foreach my $i (1..8) {
  $graphR->lb( new Label($i,-0.5,$i, 'black','center','middle'));
  $graphR->lb( new Label(-0.5,$i,$i, 'black','center','middle'));
}
$graphR->lb(new Label ( 8.5,0.25,'x','black','center','middle'));
$graphR->lb(new Label ( 0.25,8.5,'y','black','center','middle'));

# the parentheses around $fRefR are necessary
($fRefR) = plot_functions( $graphR, $f );


# Graph the right endpoint Riemann sum
$lightblue = $graphR->im->colorAllocate(148,201,255);
$darkblue = $graphR->im->colorAllocate(100,100,255);
# Create arrays of pixel references for x and y values
foreach $k (0..$n) {
   $xpixR[$k] = $graphR->ii($x[$k]);
   $ypixR[$k] = $graphR->jj($y[$k]);
}
$xaxisR = $graphR->jj(0);
# Plot the rectangles in the Riemann sum
foreach $k (1..$n) {
   $graphR->im->filledRectangle($xpixR[$k-1],$ypixR[$k],$xpixR[$k],$xaxisR,$lightblue);
   $graphR->im->rectangle($xpixR[$k-1],$ypixR[$k],$xpixR[$k],$xaxisR,$darkblue);
}

Setup:

Context()->texStrings;
BEGIN_TEXT
\{
ColumnTable(
"Suppose \( \displaystyle f(x) = $ftex \).".
$BR.
$BR.
"(a) The rectangles in the graph on the left illustrate 
a left endpoint Riemann sum for \( f(x) \) on the 
interval \( $a \leq x \leq $b \).  The value of this 
left endpoint Riemann sum is ".
NAMED_ANS_RULE('optional1',30). 
", and it is an ".
NAMED_POP_UP_LIST('optional2',['?','overestimate of',
'equal to','underestimate of','there is ambiguity']).
" the area of the region enclosed by 
\(\displaystyle y = f(x) \), the x-axis, and the 
vertical lines \(x = $a\) and \(x = $b\).".
$BR.
$BR.
"(b) The rectangles in the graph on the right illustrate 
a right endpoint Riemann sum for \( f(x) \) on the 
interval \( $a \leq x \leq $b \).  The value of this 
right endpoint Riemann sum is ".
NAMED_ANS_RULE('optional3',30).
", and it is an ".
NAMED_POP_UP_LIST('optional4',['?','overestimate of',
'equal to','underestimate of','there is ambiguity']).
" the area of the region enclosed by 
\(\displaystyle y = f(x) \), the x-axis, and the 
vertical lines \(x = $a\) and \(x = $b\)."
,
$BCENTER.
BeginTable(1).
AlignedRow( 
[image( insertGraph($graphL), height=>250, width=>250, tex_size=>450 ),
 image( insertGraph($graphR), height=>250, width=>250, tex_size=>450 )]
).
TableSpace(5,0).
AlignedRow(
["Left endpoint Riemann sum",
 "Right endpoint Riemann sum"]
).
EndTable().
$ECENTER
,
indent => 0, separation => 30, valign => "TOP"
);
\}
END_TEXT
Context()->normalStrings;

Main Text:

$LeftRiemannSum = 0;
foreach $k (0..$n-1) { $LeftRiemannSum = $LeftRiemannSum + $y[$k]; }
$LeftRiemannSum = Real("$deltax * $LeftRiemannSum");
NAMED_WEIGHTED_ANS('optional1',$LeftRiemannSum->cmp(),45);

NAMED_WEIGHTED_ANS('optional2',str_cmp("underestimate of"),5);

$RightRiemannSum = 0;
foreach $k (1..$n) { $RightRiemannSum = $RightRiemannSum + $y[$k]; }
$RightRiemannSum = Real("$deltax * $RightRiemannSum");
NAMED_WEIGHTED_ANS('optional3',$RightRiemannSum->cmp(),45);

NAMED_WEIGHTED_ANS('optional4',str_cmp("overestimate of"),5);

Answer Evaluation:

Context()->texStrings;
BEGIN_SOLUTION
(A) The left endpoint Riemann sum is 
\( f($x[0]) \cdot 0.5 + f($x[1]) \cdot 0.5 + \cdots + f($x[$n-1]) \cdot 0.5
= ( $y[0] + $y[1] + \cdots + $y[7] ) \cdot 0.5 = $LeftRiemannSum.\)
$BR
$BR
(B) The right endpoint Riemann sum is 
\( f($x[1]) \cdot 0.5 + f($x[2]) \cdot 0.5 + \cdots + f($x[$n]) \cdot 0.5
= ( $y[1] + $y[2] + \cdots + $y[$n] ) \cdot 0.5  = $RightRiemannSum.\)
END_SOLUTION
Context()->normalStrings;

COMMENT('MathObject version');

ENDDOCUMENT();

Solution:

Templates by Subject Area