Difference between revisions of "ImplicitPlane1"
(add historical tag and give links to newer problems.) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{historical}} |
||
+ | |||
+ | <p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/DiffCalcMV/ImplicitPlane.html a newer version of this problem]</p> |
||
+ | |||
<h2>Answer is an Equation for a Line or Plane</h2> |
<h2>Answer is an Equation for a Line or Plane</h2> |
||
Line 43: | Line 47: | ||
loadMacros( |
loadMacros( |
||
− | + | 'PGstandard.pl', |
|
− | + | 'MathObjects.pl', |
|
− | + | 'parserImplicitPlane.pl', |
|
− | + | 'parserVectorUtils.pl', |
|
− | + | 'PGML.pl', |
|
+ | 'PGcourse.pl' |
||
); |
); |
||
Line 56: | Line 60: | ||
<p> |
<p> |
||
<b>Initialization:</b> |
<b>Initialization:</b> |
||
+ | |||
+ | * The <tt>parserVectorUtils.pl</tt> macro is used for the <tt>non_zero_point3D</tt> function below. |
||
+ | * The <tt>parserImplicitPlane.pl</tt> macro includes the context and the <tt>ImplicitPlane</tt> function to parse and create implicit planes. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 66: | Line 73: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context( |
+ | Context('ImplicitPlane'); |
+ | Context()->variables->are(x=>'Real',y=>'Real', z=> 'Real'); |
||
$A = non_zero_point3D(-5,5,1); |
$A = non_zero_point3D(-5,5,1); |
||
Line 72: | Line 79: | ||
$answer1 = ImplicitPlane($A,$N); |
$answer1 = ImplicitPlane($A,$N); |
||
− | |||
+ | $answer2 = ImplicitPlane('4x+3y=12'); |
||
− | Context()->variables->are(x=>"Real",y=>"Real"); |
||
+ | $answer3 = ImplicitPlane('x=3'); |
||
− | |||
− | $answer2 = ImplicitPlane("4x+3y=12"); |
||
− | |||
− | $answer3 = ImplicitPlane("x=3"); |
||
</pre> |
</pre> |
||
</td> |
</td> |
||
Line 96: | Line 99: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML |
||
− | BEGIN_TEXT |
||
+ | a. Enter an equation for the plane through the point [` [$A] `] and perpendicular to [` [$N] `]. |
||
− | (a) Enter an equation for the plane through |
||
− | the point \( $A \) and perpendicular to |
||
− | \( $N \). |
||
− | $BR |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("equations") \} |
||
− | $BR |
||
− | $BR |
||
− | (b) Enter an equation for the line in the |
||
− | xy-plane with x-intercept \( 3 \) and |
||
− | y-intercept \( 4 \). |
||
− | $BR |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("equations") \} |
||
− | $BR |
||
− | $BR |
||
− | (c) Enter an equation for the vertical line |
||
− | in the xy-plane through the point \( (3,1) \). |
||
− | $BR |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("equations") \} |
||
− | END_TEXT |
||
− | Context()->normalStrings; |
||
− | </pre> |
||
− | <td style="background-color:#ffcccc;padding:7px;"> |
||
− | <p> |
||
− | <b>Main Text:</b> |
||
− | </p> |
||
− | </td> |
||
− | </tr> |
||
− | <!-- Answer evaluation section --> |
||
+ | + [______________]{$answer1} |
||
− | <tr valign="top"> |
||
+ | b. Enter an equation for the line in the [` xy `]-plane with [` x `]-intercept [` 3 `] and [` y `]-intercept [` 4 `]. |
||
− | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
+ | |||
− | <pre> |
||
+ | + [______________]{$answer2} |
||
− | $showPartialCorrectAnswers = 1; |
||
+ | |||
+ | c. Enter an equation for the vertical line in the [` xy `]-plane through the point [` (3,1) `]. |
||
− | ANS( $answer1->cmp() ); |
||
+ | + [______________]{$answer3} |
||
− | ANS( $answer2->cmp() ); |
||
+ | |||
− | ANS( $answer3->cmp() ); |
||
+ | [@ helpLink('equation') @]* |
||
+ | END_PGML |
||
</pre> |
</pre> |
||
− | <td style="background-color:# |
+ | <td style="background-color:#ffcccc;padding:7px;"> |
<p> |
<p> |
||
− | <b> |
+ | <b>Main Text:</b> |
</p> |
</p> |
||
</td> |
</td> |
||
</tr> |
</tr> |
||
− | |||
− | <!-- Solution section --> |
||
<tr valign="top"> |
<tr valign="top"> |
||
<td style="background-color:#ddddff;border:black 1px dashed;"> |
<td style="background-color:#ddddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML_SOLUTION |
||
− | BEGIN_SOLUTION |
||
Solution explanation goes here. |
Solution explanation goes here. |
||
− | END_SOLUTION |
||
+ | END_PGML_SOLUTION</pre> |
||
− | Context()->normalStrings; |
||
− | |||
− | COMMENT('MathObject version.'); |
||
− | |||
− | ENDDOCUMENT(); |
||
− | </pre> |
||
<td style="background-color:#ddddff;padding:7px;"> |
<td style="background-color:#ddddff;padding:7px;"> |
||
<p> |
<p> |
Latest revision as of 05:30, 18 July 2023
This problem has been replaced with a newer version of this problem
Answer is an Equation for a Line or Plane
This PG code shows how to define an answer that is a line or plane.
- File location in OPL: FortLewis/Authoring/Templates/DiffCalcMV/ImplicitPlane1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/DiffCalcMV/ImplicitPlane1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( 'PGstandard.pl', 'MathObjects.pl', 'parserImplicitPlane.pl', 'parserVectorUtils.pl', 'PGML.pl', 'PGcourse.pl' ); TEXT(beginproblem()); |
Initialization:
|
Context('ImplicitPlane'); Context()->variables->are(x=>'Real',y=>'Real', z=> 'Real'); $A = non_zero_point3D(-5,5,1); $N = non_zero_vector3D(-5,5,1); $answer1 = ImplicitPlane($A,$N); $answer2 = ImplicitPlane('4x+3y=12'); $answer3 = ImplicitPlane('x=3'); |
Setup:
The first answer is a standard mulitivariable calculus question. There are several different ways to specify the input to
When the |
BEGIN_PGML a. Enter an equation for the plane through the point [` [$A] `] and perpendicular to [` [$N] `]. + [______________]{$answer1} b. Enter an equation for the line in the [` xy `]-plane with [` x `]-intercept [` 3 `] and [` y `]-intercept [` 4 `]. + [______________]{$answer2} c. Enter an equation for the vertical line in the [` xy `]-plane through the point [` (3,1) `]. + [______________]{$answer3} [@ helpLink('equation') @]* END_PGML |
Main Text: |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION |
Solution: |