Difference between revisions of "Mathematical notation recognized by WeBWorK"

From WeBWorK_wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by 3 users not shown)
Line 97: Line 97:
 
print "|}\n";
 
print "|}\n";
 
-->
 
-->
  +
  +
== Grouping symbols ==
  +
* parentheses ( )
  +
* brackets [ ]
  +
* braces { }
  +
  +
You can use any of these in your answer but they must match. 3(4+5) and 2[3(4+5)+6] are valid but 3(4+5} will given the error: Mismatched parentheses: '(' and '}'.
  +
  +
When WeBWorK gives a typeset version of your answer it only uses parentheses so for example it expresses your input of 2[3(4+5)+6] as 2(3(4+5)+6) but you can use whatever you want.
   
 
== Constants ==
 
== Constants ==
  +
  +
* e
  +
* pi
   
 
== Functions ==
 
== Functions ==
Line 165: Line 177:
 
* Im()
 
* Im()
 
* conj()
 
* conj()
  +
  +
[[Category:Students]]

Latest revision as of 16:23, 7 November 2009

Operators

Operators recognized by WeBWorK, in order from highest to lowest precedence. Not all operators are available in all problems.

Operator Prec. Type Associativity Description
_ 9 binary left Vector and matrix element extraction
! 8 unary right Factorial
^ 7 binary right Exponentiation
** 7 binary right Exponentiation
+ 6 unary left Unary plus (indicates that a value is positive)
- 6 unary left Unary minus (indicates that a value is negative)
/ 3 binary left Division
* 3 binary left Multiplication
. 2 binary left Vector dot product
>< 2 binary left Vector cross product
U 1.5 binary left Union
- 1 binary left Subtraction
+ 1 binary left Addition
, 0 binary left List (vector, set, point, etc.) separator


Grouping symbols

  • parentheses ( )
  • brackets [ ]
  • braces { }

You can use any of these in your answer but they must match. 3(4+5) and 2[3(4+5)+6] are valid but 3(4+5} will given the error: Mismatched parentheses: '(' and '}'.

When WeBWorK gives a typeset version of your answer it only uses parentheses so for example it expresses your input of 2[3(4+5)+6] as 2(3(4+5)+6) but you can use whatever you want.

Constants

  • e
  • pi

Functions

In general, functions can be used with or without parentheses. For example, cosx, cos x, and cos(x) are all equivalent. However, using parentheses makes grouping more explicit and are recommended.

Not all functions are available in all problems.

Numeric functions
  • log() — Usually the natural log ([math]\log_e[/math]), but your instructor may have redefined it to be log base 10 ([math]\log_{10}[/math]).
  • log10(), logten() — Log base 10; [math]\log_{10}[/math].
  • sqrt() — Square root; [math]\sqrt{\ \ \ }[/math].
  • abs() — Absolute value; [math]|\cdots|[/math].
  • int() — Integer or floor function; [math]\lfloor\cdots\rfloor[/math].
  • sgn() — Sign function; returns +1 if its argument is positive, -1 if its argument is negative, and 0 if its argument is zero.
  • ln() — Natural log; [math]\log_e[/math].
Simple trig functions
  • sin()
  • cos()
  • tan()
  • sec()
  • csc()
  • cot()
Inverse trig functions
  • asin(), arcsin()
  • acos(), arccos()
  • atan(), arctan()
  • asec(), arcsec()
  • acsc(), arccsc()
  • acot(), arccot()
  • atan2()
Simple hyperbolic functions
  • sinh()
  • cosh()
  • tanh()
  • sech()
  • csch()
  • coth()
Inverse hyperbolic functions
  • asinh(), arcsinh()
  • acosh(), arccosh()
  • atanh(), arctanh()
  • asech(), arcsech()
  • acsch(), arccsch()
  • acoth(), arccoth()
Vector functions
  • norm()
  • unit()
Complex functions
  • arg()
  • mod()
  • Re()
  • Im()
  • conj()