Difference between revisions of "LimitsOfIntegration"

From WeBWorK_wiki
Jump to navigation Jump to search
(New page: <h2>Your title here: PG Code Snippet</h2> <!-- Header for these sections -- no modification needed --> <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> <em>Thi...)
 
Line 1: Line 1:
<h2>Your title here: PG Code Snippet</h2>
+
<h2>Answer Blanks in the Limits of an Integral</h2>
   
 
<!-- Header for these sections -- no modification needed -->
 
<!-- Header for these sections -- no modification needed -->
Line 45: Line 45:
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<pre>
 
<pre>
  +
Context("Numeric");
 
#
 
#
 
# display the integral nicely
 
# display the integral nicely

Revision as of 00:06, 27 April 2010

Answer Blanks in the Limits of an Integral


This PG code shows how to put answer blanks into the limits of an integral.

Problem Techniques Index

PG problem file Explanation
DOCUMENT();
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"unionTables.pl",
);
TEXT(beginproblem());

Initialization: We need to include the macros file unionTables.pl.

Context("Numeric");
#
# display the integral nicely
#
if ($displayMode eq 'TeX') {
  $integral =
    '\[\int_{'.ans_rule(4).'}^{'.ans_rule(4).'}'.
         ans_rule(35).'\,dx\]';
} else {
  $integral =
   $PAR.
   $BCENTER.
   BeginTable().
     Row(['\(\displaystyle \int\)',
       ans_rule(4).$BR.$BR.ans_rule(4),
       ans_rule(35),
       '\(dx\).'],separation=>2).
   EndTable().
   $ECENTER;
}

Setup: We define a mode dependent integral with three answer blanks.

Context()->texStrings;
BEGIN_TEXT
\( \displaystyle \int_1^3 x^2 \, dx = \)
$integral
END_TEXT
Context()->normalStrings;

Main Text: The problem text section of the file is as we'd expect. We insert the integral with answer blanks using $integral.

$showPartialCorrectAnswers = 1;

ANS( Real(3)->cmp() );
ANS( Real(1)->cmp() );
ANS( Formula("x^2")->cmp() );

ENDDOCUMENT();

Answer Evaluation: As is the answer.

Problem Techniques Index