Difference between revisions of "ProvingTrigIdentities1"
Jump to navigation
Jump to search
(Created page with '<h2>Proving Trig Identities</h2> 300px|thumb|right|Click to enlarge <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> …') |
|||
Line 2: | Line 2: | ||
[[File:ProvingTrigIdentities1.png|300px|thumb|right|Click to enlarge]] |
[[File:ProvingTrigIdentities1.png|300px|thumb|right|Click to enlarge]] |
||
− | <p style="background-color:# |
+ | <p style="background-color:#f9f9f9;border:black solid 1px;padding:3px;"> |
− | This PG code shows how to ... |
+ | This PG code shows how to write a multi-part question in which each new part is revealed only after the previous part is answered correctly. The parts are revealed sequentially on the same html page instead of each part having its own html page. We also cleverly redefine the sine function to require students to simplify their answers when applying well-known trig identities. |
</p> |
</p> |
||
− | * Download file: [[File: |
+ | * Download file: [[File:ProvingTrigIdentities1.txt]] (change the file extension from txt to pg when you save it) |
− | * File location in NPL: <code>FortLewis/Authoring/Templates/. |
+ | * File location in NPL: <code>FortLewis/Authoring/Templates/Trig/ProvingTrigIdentities1.pg</code> |
<br clear="all" /> |
<br clear="all" /> |
||
Line 45: | Line 45: | ||
"PGstandard.pl", |
"PGstandard.pl", |
||
"MathObjects.pl", |
"MathObjects.pl", |
||
− | "AnswerFormatHelp.pl", |
||
); |
); |
||
TEXT(beginproblem()); |
TEXT(beginproblem()); |
||
+ | |||
+ | $showPartialCorrectAnswers = 1; |
||
</pre> |
</pre> |
||
</td> |
</td> |
||
Line 64: | Line 65: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context("Numeric"); |
+ | Context("Numeric")->variables->are(t=>"Real"); |
− | $answer = Compute("1"); |
||
+ | # |
||
+ | # Redefine the sin(x) to be e^(pi x) |
||
+ | # |
||
+ | Context()->functions->remove("sin"); |
||
+ | package NewFunc; |
||
+ | # this next line makes the function a |
||
+ | # function from reals to reals |
||
+ | our @ISA = qw(Parser::Function::numeric); |
||
+ | sub sin { |
||
+ | shift; my $x = shift; |
||
+ | return CORE::exp($x*3.1415926535); |
||
+ | } |
||
+ | package main; |
||
+ | # Make it work on formulas as well as numbers |
||
+ | #sub cos {Parser::Function->call('cos',@_)} # if uncommented, this line will generate error messages |
||
+ | # Add the new functions to the Context |
||
+ | Context()->functions->add( sin => {class => 'NewFunc', TeX => '\sin'}, ); |
||
+ | |||
+ | |||
+ | # |
||
+ | # You manually define the answers |
||
+ | # |
||
+ | @answers = (); |
||
+ | $answers[1] = Formula("1-cos(t)"); |
||
+ | $answers[2] = Formula("sin(t)"); |
||
+ | $answers[3] = Formula("1-(cos(t))^2"); |
||
+ | |||
+ | |||
+ | # |
||
+ | # Automatic configuration for answer evaluation |
||
+ | # |
||
+ | @ans_eval = (); |
||
+ | @scores = (); |
||
+ | foreach my $i (1..$#answers) { |
||
+ | $ans_eval[$i] = $answers[$i] ->cmp(); |
||
+ | $ans_hash[$i] = $ans_eval[$i]->evaluate($inputs_ref->{ANS_NUM_TO_NAME($i)}); |
||
+ | $scores[$i] = $ans_hash[$i]->{score}; |
||
+ | } |
||
</pre> |
</pre> |
||
</td> |
</td> |
||
Line 76: | Line 114: | ||
</tr> |
</tr> |
||
− | <!-- Main text section --> |
||
<tr valign="top"> |
<tr valign="top"> |
||
Line 83: | Line 120: | ||
Context()->texStrings; |
Context()->texStrings; |
||
BEGIN_TEXT |
BEGIN_TEXT |
||
− | Question text |
||
+ | ${BBOLD}Part 1 of 3:${EBOLD} |
||
$BR |
$BR |
||
$BR |
$BR |
||
− | Answer = |
||
+ | In this multi-part problem, we will use algebra to verify |
||
+ | the identity |
||
+ | $BCENTER |
||
+ | \( \displaystyle \frac{ \sin(t) }{ 1-\cos(t) } = \frac{ 1+\cos(t) }{ \sin(t) }. \) |
||
+ | $ECENTER |
||
+ | $BR |
||
+ | First, using algebra we may rewrite the equation above as |
||
+ | $BR |
||
+ | $BR |
||
+ | \( \displaystyle \sin(t) = \left( \frac{1+\cos(t)}{\sin(t)} \right) \cdot \Big( \) |
||
\{ ans_rule(20) \} |
\{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("formulas") \} |
||
+ | \( \Big) \) |
||
END_TEXT |
END_TEXT |
||
Context()->normalStrings; |
Context()->normalStrings; |
||
+ | |||
+ | ANS( $ans_eval[1] ); |
||
</pre> |
</pre> |
||
<td style="background-color:#ffcccc;padding:7px;"> |
<td style="background-color:#ffcccc;padding:7px;"> |
||
<p> |
<p> |
||
− | <b>Main Text:</b> |
+ | <b>Main Text and Answer Evaluation Part 1:</b> |
</p> |
</p> |
||
</td> |
</td> |
||
</tr> |
</tr> |
||
− | <!-- Answer evaluation section --> |
||
<tr valign="top"> |
<tr valign="top"> |
||
<td style="background-color:#eeddff;border:black 1px dashed;"> |
<td style="background-color:#eeddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | $showPartialCorrectAnswers = 1; |
||
+ | if ($scores[1]==1) { |
||
− | ANS( $answer->cmp() ); |
||
+ | Context()->texStrings; |
||
+ | BEGIN_TEXT |
||
+ | $PAR |
||
+ | $HR |
||
+ | ${BBOLD}Part 2 of 3:${EBOLD} |
||
+ | $BR |
||
+ | $BR |
||
+ | Then, using algebra we may rewrite the equation as |
||
+ | $BR |
||
+ | $BR |
||
+ | \( \sin(t) \cdot \big( \) |
||
+ | \{ ans_rule(20) \} |
||
+ | \( \big) = \big(1+\cos(t)\big) \cdot \big(1-\cos(t)\big) \), |
||
+ | END_TEXT |
||
+ | Context()->normalStrings; |
||
+ | |||
+ | ANS( $ans_eval[2] ); |
||
+ | |||
+ | } # end if |
||
</pre> |
</pre> |
||
<td style="background-color:#eeccff;padding:7px;"> |
<td style="background-color:#eeccff;padding:7px;"> |
||
<p> |
<p> |
||
− | <b>Answer Evaluation:</b> |
+ | <b>Main Text and Answer Evaluation Part 2:</b> |
</p> |
</p> |
||
</td> |
</td> |
||
Line 120: | Line 185: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> |
<td style="background-color:#ddddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
+ | if ( ($scores[1]==1) && ($scores[2]==1) ) { |
||
+ | |||
Context()->texStrings; |
Context()->texStrings; |
||
− | BEGIN_SOLUTION |
||
+ | BEGIN_TEXT |
||
− | ${PAR}SOLUTION:${PAR} |
||
+ | $PAR |
||
− | Solution explanation goes here. |
||
+ | $HR |
||
− | END_SOLUTION |
||
+ | ${BBOLD}Part 3 of 3:${EBOLD} |
||
+ | $BR |
||
+ | $BR |
||
+ | Finally, using algebra we may rewrite the equation as |
||
+ | $BR |
||
+ | $BR |
||
+ | \( \sin^2(t) = \) |
||
+ | \{ ans_rule(20) \} |
||
+ | $BR |
||
+ | $BR |
||
+ | which is true since \( \cos^2(t) + \sin^2(t) = 1 \). |
||
+ | Thus, the original identity can be derived |
||
+ | by reversing these steps. |
||
+ | END_TEXT |
||
Context()->normalStrings; |
Context()->normalStrings; |
||
− | COMMENT('MathObject version.'); |
||
+ | ANS( $ans_eval[3] ); |
||
+ | |||
+ | } # end if |
||
+ | |||
+ | |||
+ | COMMENT("MathObject version. This is a multi-part problem |
||
+ | in which the next part is revealed only after the previous |
||
+ | part is correct. Prevents students from entering trivial |
||
+ | identities (entering what they were given)"); |
||
ENDDOCUMENT(); |
ENDDOCUMENT(); |
||
Line 133: | Line 221: | ||
<td style="background-color:#ddddff;padding:7px;"> |
<td style="background-color:#ddddff;padding:7px;"> |
||
<p> |
<p> |
||
− | <b>Solution:</b> |
||
+ | <b>Main Text and Answer Evaluation Part 3:</b> |
||
</p> |
</p> |
||
</td> |
</td> |
Revision as of 00:53, 3 December 2010
Proving Trig Identities
This PG code shows how to write a multi-part question in which each new part is revealed only after the previous part is answered correctly. The parts are revealed sequentially on the same html page instead of each part having its own html page. We also cleverly redefine the sine function to require students to simplify their answers when applying well-known trig identities.
- Download file: File:ProvingTrigIdentities1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/Trig/ProvingTrigIdentities1.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", ); TEXT(beginproblem()); $showPartialCorrectAnswers = 1; |
Initialization: |
Context("Numeric")->variables->are(t=>"Real"); # # Redefine the sin(x) to be e^(pi x) # Context()->functions->remove("sin"); package NewFunc; # this next line makes the function a # function from reals to reals our @ISA = qw(Parser::Function::numeric); sub sin { shift; my $x = shift; return CORE::exp($x*3.1415926535); } package main; # Make it work on formulas as well as numbers #sub cos {Parser::Function->call('cos',@_)} # if uncommented, this line will generate error messages # Add the new functions to the Context Context()->functions->add( sin => {class => 'NewFunc', TeX => '\sin'}, ); # # You manually define the answers # @answers = (); $answers[1] = Formula("1-cos(t)"); $answers[2] = Formula("sin(t)"); $answers[3] = Formula("1-(cos(t))^2"); # # Automatic configuration for answer evaluation # @ans_eval = (); @scores = (); foreach my $i (1..$#answers) { $ans_eval[$i] = $answers[$i] ->cmp(); $ans_hash[$i] = $ans_eval[$i]->evaluate($inputs_ref->{ANS_NUM_TO_NAME($i)}); $scores[$i] = $ans_hash[$i]->{score}; } |
Setup: |
Context()->texStrings; BEGIN_TEXT ${BBOLD}Part 1 of 3:${EBOLD} $BR $BR In this multi-part problem, we will use algebra to verify the identity $BCENTER \( \displaystyle \frac{ \sin(t) }{ 1-\cos(t) } = \frac{ 1+\cos(t) }{ \sin(t) }. \) $ECENTER $BR First, using algebra we may rewrite the equation above as $BR $BR \( \displaystyle \sin(t) = \left( \frac{1+\cos(t)}{\sin(t)} \right) \cdot \Big( \) \{ ans_rule(20) \} \( \Big) \) END_TEXT Context()->normalStrings; ANS( $ans_eval[1] ); |
Main Text and Answer Evaluation Part 1: |
if ($scores[1]==1) { Context()->texStrings; BEGIN_TEXT $PAR $HR ${BBOLD}Part 2 of 3:${EBOLD} $BR $BR Then, using algebra we may rewrite the equation as $BR $BR \( \sin(t) \cdot \big( \) \{ ans_rule(20) \} \( \big) = \big(1+\cos(t)\big) \cdot \big(1-\cos(t)\big) \), END_TEXT Context()->normalStrings; ANS( $ans_eval[2] ); } # end if |
Main Text and Answer Evaluation Part 2: |
if ( ($scores[1]==1) && ($scores[2]==1) ) { Context()->texStrings; BEGIN_TEXT $PAR $HR ${BBOLD}Part 3 of 3:${EBOLD} $BR $BR Finally, using algebra we may rewrite the equation as $BR $BR \( \sin^2(t) = \) \{ ans_rule(20) \} $BR $BR which is true since \( \cos^2(t) + \sin^2(t) = 1 \). Thus, the original identity can be derived by reversing these steps. END_TEXT Context()->normalStrings; ANS( $ans_eval[3] ); } # end if COMMENT("MathObject version. This is a multi-part problem in which the next part is revealed only after the previous part is correct. Prevents students from entering trivial identities (entering what they were given)"); ENDDOCUMENT(); |
Main Text and Answer Evaluation Part 3: |