Difference between revisions of "ProvingTrigIdentities2"
Jump to navigation
Jump to search
Paultpearson (talk | contribs) m |
|||
Line 264: | Line 264: | ||
[[Category:Top]] |
[[Category:Top]] |
||
− | [[Category: |
+ | [[Category:Sample Problems]] |
+ | [[Category:Subject Area Templates]] |
Revision as of 15:34, 3 January 2012
Proving Trig Identites using a Compound Problem
This PG code shows how to have a multi-part question in which each part is revealed sequentially on its own html page.
- Download file: File:ProvingTrigIdentities2.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/Trig/ProvingTrigIdentities2.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "compoundProblem.pl", "Parser.pl", "PGunion.pl", ); TEXT(beginproblem()); BEGIN_PROBLEM(); |
Initialization:
We use the |
Context("Numeric")->variables->are(t=>"Real"); # # Redefine the sin(x) to be e^(pi x) # Context()->functions->remove("sin"); package NewFunc; # this next line makes the function a # function from reals to reals our @ISA = qw(Parser::Function::numeric); sub sin { shift; my $x = shift; return CORE::exp($x*3.1415926535); } package main; # Add the new functions to the Context Context()->functions->add(sin=>{class=>'NewFunc',TeX =>'\sin'}); $isProfessor = $studentLogin eq 'professor'; # # Set up the compound problem object. # $cp = new compoundProblem( parts => 3, totalAnswers => 3, parserValues => 1, allowReset => $isProfessor, ); $part = $cp->part; |
Setup: |
if ($part == 1) { BEGIN_TEXT ${BBOLD}Part 1 of 3:${EBOLD} $BR $BR ${BITALIC}Instructions:${EITALIC} You will need to submit your answers twice for each part. The first time you submit your answers they will be checked for correctness. When your answer is correct, check the box for ${BITALIC}Go on to next part${EITALIC} and click the submit button. You will not be able to go back to previous parts. $BR $BR In this multi-part problem, we will use algebra to verify the identity $BCENTER \( \displaystyle \frac{ \sin(t) }{ 1-\cos(t) } = \frac{ 1+\cos(t) }{ \sin(t) }. \) $ECENTER $BR First, using algebra we may rewrite the equation above as $BR $BR \( \displaystyle \sin(t) = \left( \frac{1+\cos(t)}{\sin(t)} \right) \cdot \Big( \) \{ ans_rule(20) \} \( \Big) \) END_TEXT ANS( Formula("1-cos(t)")->cmp() ); } |
Part 1: |
if ($part == 2) { BEGIN_TEXT ${BBOLD}Part 2 of 3:${EBOLD} $BR $BR Step 0: \( \displaystyle \frac{ \sin(t) }{ 1-\cos(t) } = \frac{ 1+\cos(t) }{ \sin(t) }. \) $BR $BR Step 1: \( \displaystyle \sin(t) = \left( \frac{1+\cos(t)}{\sin(t)} \right) \cdot ( 1 - \cos(t) ). \) $BR $HR $BR We may use algebra to rewrite the equation from Step 1 as $BR $BR \( \sin(t) \cdot \big( \) \{ ans_rule(20) \} \( \big) = \big(1+\cos(t)\big) \cdot \big(1-\cos(t)\big) \). END_TEXT ANS( Formula("sin(t)")->cmp() ); } |
Part 2: |
if ($part == 3) { BEGIN_TEXT ${BBOLD}Part 3 of 3:${EBOLD} $BR $BR Step 0: \( \displaystyle \frac{ \sin(t) }{ 1-\cos(t) } = \frac{ 1+\cos(t) }{ \sin(t) }. \) $BR $BR Step 1: \( \displaystyle \sin(t) = \left( \frac{1+\cos(t)}{\sin(t)} \right) \cdot ( 1 - \cos(t) ). \) $BR $BR Step 2: \( \displaystyle \sin(t) \sin(t) = (1+\cos(t))(1-\cos(t)) \) $BR $HR $BR Finally, using algebra we may rewrite the equation from step 2 as $BR $BR \( \sin^2(t) = \) \{ ans_rule(20) \} $BR $BR which is true since \( \cos^2(t) + \sin^2(t) = 1 \). Thus, the original identity can be derived by reversing these steps. END_TEXT ANS( Formula("1-(cos(t))^2")->cmp() ); } END_PROBLEM(); ENDDOCUMENT(); |
Part 3: |