Difference between revisions of "LimitsOfIntegration1"
Jump to navigation
Jump to search
Line 55: | Line 55: | ||
<p> |
<p> |
||
<b>Initialization:</b> |
<b>Initialization:</b> |
||
+ | We must use <code>PGunion.pl</code> for table formatting commands we will use to put the answer blanks in the limits of integration. We use <code>answerHints.pl</code> to help guide students toward the correct answer. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 104: | Line 105: | ||
<p> |
<p> |
||
<b>Setup:</b> |
<b>Setup:</b> |
||
+ | The block of code that puts the answer blanks into the exponents correctly in HTML and TeX modes probably does not need to be modified. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 126: | Line 128: | ||
<p> |
<p> |
||
<b>Main Text:</b> |
<b>Main Text:</b> |
||
+ | To display the integral with answer blanks in the limits of integration properly, we insert it using <code>$integral</code>. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 151: | Line 154: | ||
<p> |
<p> |
||
<b>Answer Evaluation:</b> |
<b>Answer Evaluation:</b> |
||
+ | We use <code>AnswerHints</code> to guide the students to the correct answer. |
||
</p> |
</p> |
||
</td> |
</td> |
Revision as of 16:35, 3 December 2010
Answer Blanks in the Limits of Integration
This PG code shows how to put answer blanks into the limits of integration.
- Download file: File:LimitsOfIntegration1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/IntegralCalc/LimitsOfIntegration1.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "PGunion.pl", "answerHints.pl", ); TEXT(beginproblem()); |
Initialization:
We must use |
Context("Numeric"); Context()->variables->are( x=>"Real", dx=>"Real", t=>"Real", dt=>"Real" ); $fpx = Formula("sin(x)"); $fpt = Formula("sin(t)"); # # Display the answer blanks properly in different modes # Context()->texStrings; if ($displayMode eq 'TeX') { $integral = '\(\displaystyle f(x) = '. ans_rule(4). '+ \int_{t = '. ans_rule(4). '}^{t = '. ans_rule(4). '}'. ans_rule(20). '\)'; } else { $integral = BeginTable(center=>0). Row([ '\(f(x)=\)'.$SPACE.ans_rule(4).$SPACE.'\(+\displaystyle\int\)', '\( t = \)'.ans_rule(4).$BR.$BR.'\( t = \)'.ans_rule(4), ans_rule(20)],separation=>2). EndTable(); } Context()->normalStrings; |
Setup: The block of code that puts the answer blanks into the exponents correctly in HTML and TeX modes probably does not need to be modified. |
Context()->texStrings; BEGIN_TEXT Find a formula for the function \(f(x)\) such that \( \displaystyle f'(x)= $fpx \) and \( f(2)=5 \). $BR $BR $integral END_TEXT Context()->normalStrings; |
Main Text:
To display the integral with answer blanks in the limits of integration properly, we insert it using |
$showPartialCorrectAnswers = 1; ANS( Compute("5")->cmp() ); ANS( Compute("x")->cmp() ); ANS( Compute("2")->cmp() ); ANS( Compute("$fpt * dt")->cmp() ->withPostFilter(AnswerHints( Formula("$fpx") => "Are you using the correct variable?", Formula("$fpx*dx") => "Are you using the correct variable?", Formula("$fpt") => "Don't forget the differential dt", )) ); |
Answer Evaluation:
We use |
Context()->texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version'); ENDDOCUMENT(); |
Solution: |