Difference between revisions of "LimitsOfIntegration1"

From WeBWorK_wiki
Jump to navigation Jump to search
Line 55: Line 55:
 
<p>
 
<p>
 
<b>Initialization:</b>
 
<b>Initialization:</b>
  +
We must use <code>PGunion.pl</code> for table formatting commands we will use to put the answer blanks in the limits of integration. We use <code>answerHints.pl</code> to help guide students toward the correct answer.
 
</p>
 
</p>
 
</td>
 
</td>
Line 104: Line 105:
 
<p>
 
<p>
 
<b>Setup:</b>
 
<b>Setup:</b>
  +
The block of code that puts the answer blanks into the exponents correctly in HTML and TeX modes probably does not need to be modified.
 
</p>
 
</p>
 
</td>
 
</td>
Line 126: Line 128:
 
<p>
 
<p>
 
<b>Main Text:</b>
 
<b>Main Text:</b>
  +
To display the integral with answer blanks in the limits of integration properly, we insert it using <code>$integral</code>.
 
</p>
 
</p>
 
</td>
 
</td>
Line 151: Line 154:
 
<p>
 
<p>
 
<b>Answer Evaluation:</b>
 
<b>Answer Evaluation:</b>
  +
We use <code>AnswerHints</code> to guide the students to the correct answer.
 
</p>
 
</p>
 
</td>
 
</td>

Revision as of 16:35, 3 December 2010

Answer Blanks in the Limits of Integration

Click to enlarge

This PG code shows how to put answer blanks into the limits of integration.

  • Download file: File:LimitsOfIntegration1.txt (change the file extension from txt to pg when you save it)
  • File location in NPL: FortLewis/Authoring/Templates/IntegralCalc/LimitsOfIntegration1.pg


Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();

loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"PGunion.pl",
"answerHints.pl",
);

TEXT(beginproblem());

Initialization: We must use PGunion.pl for table formatting commands we will use to put the answer blanks in the limits of integration. We use answerHints.pl to help guide students toward the correct answer.

Context("Numeric");
Context()->variables->are(
x=>"Real", dx=>"Real",
t=>"Real", dt=>"Real"
);

$fpx = Formula("sin(x)"); 
$fpt = Formula("sin(t)");   

#
#  Display the answer blanks properly in different modes
#
Context()->texStrings;
if ($displayMode eq 'TeX') {
   $integral =
   '\(\displaystyle f(x) = '.
   ans_rule(4). 
   '+ \int_{t = '. 
   ans_rule(4). 
   '}^{t = '. 
   ans_rule(4).
   '}'. 
   ans_rule(20).
   '\)';
  } else {
   $integral =
   BeginTable(center=>0).
     Row([
       '\(f(x)=\)'.$SPACE.ans_rule(4).$SPACE.'\(+\displaystyle\int\)',
       '\( t = \)'.ans_rule(4).$BR.$BR.'\( t = \)'.ans_rule(4),
       ans_rule(20)],separation=>2).
   EndTable();
}
Context()->normalStrings;

Setup: The block of code that puts the answer blanks into the exponents correctly in HTML and TeX modes probably does not need to be modified.

Context()->texStrings;
BEGIN_TEXT
Find a formula for the function \(f(x)\) such that 
\( \displaystyle f'(x)= $fpx \) and \( f(2)=5 \).
$BR
$BR
$integral
END_TEXT
Context()->normalStrings;

Main Text: To display the integral with answer blanks in the limits of integration properly, we insert it using $integral.

$showPartialCorrectAnswers = 1;

ANS( Compute("5")->cmp() );
ANS( Compute("x")->cmp() );
ANS( Compute("2")->cmp() );
ANS( Compute("$fpt * dt")->cmp()
->withPostFilter(AnswerHints( 
  Formula("$fpx") => "Are you using the correct variable?",
  Formula("$fpx*dx") => "Are you using the correct variable?",
  Formula("$fpt") => "Don't forget the differential dt", 
))
);

Answer Evaluation: We use AnswerHints to guide the students to the correct answer.

Context()->texStrings;
BEGIN_SOLUTION
${PAR}SOLUTION:${PAR}
Solution explanation goes here.
END_SOLUTION
Context()->normalStrings;


COMMENT('MathObject version');

ENDDOCUMENT();

Solution:

Templates by Subject Area