Difference between revisions of "IndefiniteIntegrals1"
Jump to navigation
Jump to search
(Removes the AnswerFormatHelp macro and some other cleanup.) |
(add historical tag and give links to newer problems.) |
||
Line 1: | Line 1: | ||
+ | {{historical}} |
||
+ | |||
+ | <p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/IndefiniteIntegrals.html a newer version of this problem]</p> |
||
+ | |||
+ | |||
<h2>Indefinite Integrals and General Antiderivatives</h2> |
<h2>Indefinite Integrals and General Antiderivatives</h2> |
||
Latest revision as of 05:13, 18 July 2023
This problem has been replaced with a newer version of this problem
Indefinite Integrals and General Antiderivatives
This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- File location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( 'PGstandard.pl', 'MathObjects.pl', 'parserFormulaUpToConstant.pl', 'PGML.pl', 'PGcourse.pl' ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); $specific = Formula("e^x"); $general = FormulaUpToConstant("e^x"); |
Setup: Examples of specific and general antiderivatives:
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
BEGIN_PGML + Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} + Enter the most general antiderivative for [` e^x `]: [____________]{$general} [@ helpLink('formulas') @]* END_PGML |
Main Text: |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT(); |
Solution: |