Difference between revisions of "IndefiniteIntegrals1"
Jump to navigation
Jump to search
(add historical tag and give links to newer problems.) |
|||
(8 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{historical}} |
||
+ | |||
+ | <p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/IndefiniteIntegrals.html a newer version of this problem]</p> |
||
+ | |||
+ | |||
<h2>Indefinite Integrals and General Antiderivatives</h2> |
<h2>Indefinite Integrals and General Antiderivatives</h2> |
||
− | <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
+ | [[File:IndefiniteIntegrals1.png|300px|thumb|right|Click to enlarge]] |
||
+ | <p style="background-color:#f9f9f9;border:black solid 1px;padding:3px;"> |
||
This PG code shows how to check answers that are indefinite integrals or general antiderivatives. |
This PG code shows how to check answers that are indefinite integrals or general antiderivatives. |
||
− | <ul> |
||
− | <li>Download file: [[File:IndefiniteIntegrals1.txt]] (change the file extension from txt to pg when you save it)</li> |
||
− | <li>File location in NPL: <code>NationalProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg</code></li> |
||
− | </ul> |
||
</p> |
</p> |
||
+ | * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg] |
||
+ | * PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg] |
||
+ | <br clear="all" /> |
||
<p style="text-align:center;"> |
<p style="text-align:center;"> |
||
[[SubjectAreaTemplates|Templates by Subject Area]] |
[[SubjectAreaTemplates|Templates by Subject Area]] |
||
Line 16: | Line 21: | ||
<tr valign="top"> |
<tr valign="top"> |
||
− | <th> PG problem file </th> |
+ | <th style="width: 40%"> PG problem file </th> |
<th> Explanation </th> |
<th> Explanation </th> |
||
</tr> |
</tr> |
||
Line 43: | Line 48: | ||
loadMacros( |
loadMacros( |
||
− | + | 'PGstandard.pl', |
|
− | + | 'MathObjects.pl', |
|
− | + | 'parserFormulaUpToConstant.pl', |
|
− | + | 'PGML.pl', |
|
+ | 'PGcourse.pl' |
||
); |
); |
||
Line 75: | Line 80: | ||
<p> |
<p> |
||
<b>Setup:</b> |
<b>Setup:</b> |
||
− | The specific antiderivative should mark correct answers such as <code>e^x, e^x + pi</code>, etc. The general antiderivative should mark correct answers such as <code>e^x + C, e^x + C - 3, e^x + K</code>, etc. |
||
+ | Examples of specific and general antiderivatives: |
||
+ | <ul> |
||
+ | <li>Specific antiderivatives: <code>e^x, e^x + pi</code></li> |
||
+ | <li>General antiderivatives: <code>e^x + C, e^x + C - 3, e^x + K</code></li> |
||
+ | </ul> |
||
</p> |
</p> |
||
<p> |
<p> |
||
Line 88: | Line 97: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML |
||
− | BEGIN_TEXT |
||
+ | + Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} |
||
− | Enter a specific antiderivative for \( e^x \): |
||
+ | |||
− | \{ ans_rule(20) \} |
||
+ | + Enter the most general antiderivative for [` e^x `]: [____________]{$general} |
||
− | \{ AnswerFormatHelp("formulas") \} |
||
+ | |||
− | $BR |
||
+ | [@ helpLink('formulas') @]* |
||
− | $BR |
||
+ | END_PGML |
||
− | Enter the most general antiderivative for \( e^x \): |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("formulas") \} |
||
− | END_TEXT |
||
− | Context()->normalStrings; |
||
</pre> |
</pre> |
||
<td style="background-color:#ffcccc;padding:7px;"> |
<td style="background-color:#ffcccc;padding:7px;"> |
||
<p> |
<p> |
||
<b>Main Text:</b> |
<b>Main Text:</b> |
||
− | </p> |
||
− | </td> |
||
− | </tr> |
||
− | |||
− | <!-- Answer evaluation section --> |
||
− | |||
− | <tr valign="top"> |
||
− | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
− | <pre> |
||
− | $showPartialCorrectAnswers = 1; |
||
− | |||
− | ANS( $specific->cmp(upToConstant=>1) ); |
||
− | |||
− | ANS( $general->cmp() ); |
||
− | </pre> |
||
− | <td style="background-color:#eeccff;padding:7px;"> |
||
− | <p> |
||
− | <b>Answer Evaluation:</b> |
||
− | For the specific antiderivative, we must use <code>upToConstant=>1</code>, otherwise the only answer that will be marked correct will be <code>e^x</code>. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 132: | Line 117: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> |
<td style="background-color:#ddddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML_SOLUTION |
||
− | BEGIN_SOLUTION |
||
− | ${PAR}SOLUTION:${PAR} |
||
Solution explanation goes here. |
Solution explanation goes here. |
||
− | END_SOLUTION |
||
+ | END_PGML_SOLUTION |
||
− | Context()->normalStrings; |
||
− | |||
− | COMMENT('MathObject version.'); |
||
ENDDOCUMENT(); |
ENDDOCUMENT(); |
||
Line 157: | Line 137: | ||
[[Category:Top]] |
[[Category:Top]] |
||
− | [[Category: |
+ | [[Category:Sample Problems]] |
+ | [[Category:Subject Area Templates]] |
Latest revision as of 05:13, 18 July 2023
This problem has been replaced with a newer version of this problem
Indefinite Integrals and General Antiderivatives
This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- File location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( 'PGstandard.pl', 'MathObjects.pl', 'parserFormulaUpToConstant.pl', 'PGML.pl', 'PGcourse.pl' ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); $specific = Formula("e^x"); $general = FormulaUpToConstant("e^x"); |
Setup: Examples of specific and general antiderivatives:
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
BEGIN_PGML + Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} + Enter the most general antiderivative for [` e^x `]: [____________]{$general} [@ helpLink('formulas') @]* END_PGML |
Main Text: |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT(); |
Solution: |