Difference between revisions of "SolidsWW Flash Applet Sample Problem 1"
Line 102: | Line 102: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | # Set up problem |
||
+ | TEXT(beginproblem()); |
||
− | $qtype='limits'; |
||
+ | $showPartialCorrectAnswers = 1; |
||
+ | Context("Numeric"); |
||
− | $showHint = 0; |
||
+ | $a = random(2,10,1); |
||
− | if(time>$dueDate){ |
||
+ | $b = random(2,10,1); |
||
− | $showHint=1; |
||
− | } |
||
− | $x1=random(-8,-2,1); |
||
+ | $xy = 'y'; |
||
− | $x2=$x1+random(2,4,1); |
||
+ | $func1 = "$a*sin(pi*y/8)+2"; |
||
− | $x3=$x2+random(2,3,1); |
||
+ | $func2 = "$b*sin(pi*y/2)+2"; |
||
− | $x4=random($x3+2,7,1); |
||
+ | $xmax = max(Compute("$a+2"),Compute("$b+2"),9); |
||
+ | $shapeType = 'circle'; |
||
+ | |||
+ | $correctAnswer =Compute("64*$a+4*pi*$a^2+32*pi"); |
||
</pre> |
</pre> |
||
</td> |
</td> |
||
Line 121: | Line 123: | ||
</p> |
</p> |
||
<p> |
<p> |
||
− | The GraphLimits.swf applet will accept four different question types, specified with the <code>$qtype</code> variable. These are: limits, continuity, first_derivative and second_derivative. This sample problem is set to 'limits'. |
||
+ | The solidsWW.swf applet will accept a piecewise defined function either in terms of x or in terms of y. We set <code>$xy</code> equal to y to define the function in terms of y. The two pieces of the function are defined in the variables <code>$func1</code> and <code>$func2</code>, though any variable names beginning with the $ character will do. The applet also needs a maximum x-value for the profile graph. Usually you will want the <code>$shapeType</code> to be 'circle' as it is here, but other types are accepted by the applet including: 'ellipse', 'rectangle' and 'poly'. For 'ellipse' and 'rectangle' you will need to set the ratio of the side lengths. For 'poly' you will need to set the number of sides of the regular polygon. They are also set in the code for this problem, but the information is ignored by the applet. |
||
− | </p> |
||
− | <p> |
||
− | The applet has solution/hint information embedded in it. When <code>$hintState=0</code>, this information is not shown. When <code>$hintState=1</code>, this information is revealed. The <code>time</code> parameter tracks the current date and time. The conditional compares that to the due date for the problem set (in the <code>$dueDate</code> scalar variable) and sets <code>$hintState</code> to 1 if the due date has passed and leaves <code>$hintState</code> set to 0 if the assignment is not yet due. |
||
− | </p> |
||
− | <p> |
||
− | The four variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are the x-coordinates of four points on the graph that the applet will set to be a removable discontinuity, a jump discontinuity or a cusp. The order of these phenomena is random as are the y-values chosen. The x-coordinates must be between -10 and 10. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 135: | Line 131: | ||
<pre> |
<pre> |
||
########################################################################## |
########################################################################## |
||
− | # How to use the |
+ | # How to use the solidWW applet. |
− | # Purpose: The purpose of this applet is to |
+ | # Purpose: The purpose of this applet is to help with visualization of |
+ | # solids |
||
# Use of applet: The applet state consists of the following fields: |
# Use of applet: The applet state consists of the following fields: |
||
− | # qType - question type: limits, continuity, first_derivative, |
||
+ | # xmax - the maximum x-value. ymax is 7/5ths of xmax. the minima |
||
− | # |
+ | # are both zero. |
− | # |
+ | # captiontxt - the initial text in the info box in the applet |
− | # |
+ | # shapeType - circle, ellipse, poly, rectangle |
− | # |
+ | # piece: consisting of func and cut |
− | # |
+ | # this is a function defined piecewise. |
+ | # func is a string for the function and |
||
+ | # cut is the right endpoint of the interval over which it is defined |
||
+ | # there can be any number of pieces |
||
+ | # |
||
########################################################################## |
########################################################################## |
||
− | # qType = limits |
||
− | # right_limits - returns a list of points (a,b) such that |
||
− | # lim_{x\to a^-}f(x)=b, but lim_{x\to a^+}f(x)\= b |
||
− | # left_limits - returns a list of points (a,b) such that |
||
− | # lim_{x\to a^+}f(x)=b, but lim_{x\to a^-}f(x)\= b |
||
− | # neither_limits - returns a list of points (a,b) such that |
||
− | # lim_{x\to a^-}f(x)\=lim_{x\to a^+}f(x)\= f(a)=b |
||
− | # get_intervals returns a list of intervals on which f(x) is continuous. |
||
− | # get_f_of_x - given x value, returns f(x). |
||
− | # returns NaN for x notin [-10,10]. |
||
− | # getf_list - given x value and string returns |
||
− | # "function" - returns f(x) |
||
− | # "leftlimit" - returns lim_{x->a^-}f(x) |
||
− | # "rightlimit" - returns lim_{x->a^+}f(x) |
||
− | # "limit" - returns lim_{x->a}f(x) or "DNE" |
||
− | # |
||
# What does the applet do? |
# What does the applet do? |
||
− | # The applet draws |
+ | # The applet draws three graphs: |
− | # |
+ | # a solid in 3d that the student can rotate with the mouse |
+ | # the cross-section of the solid (you'll probably want this to be |
||
+ | # a circle |
||
+ | # the radius of the solid which varies with the height |
||
############################################################################## |
############################################################################## |
||
################################### |
################################### |
||
# Create link to applet |
# Create link to applet |
||
################################### |
################################### |
||
− | $appletName = " |
+ | $appletName = "solidsWW"; |
$applet = FlashApplet( |
$applet = FlashApplet( |
||
codebase => findAppletCodebase("$appletName.swf"), |
codebase => findAppletCodebase("$appletName.swf"), |
||
Line 178: | Line 158: | ||
maxInitializationAttempts => 10, # number of attempts to initialize applet |
maxInitializationAttempts => 10, # number of attempts to initialize applet |
||
#answerBoxAlias => 'answerBox', |
#answerBoxAlias => 'answerBox', |
||
− | height => ' |
+ | height => '550', |
− | width => ' |
+ | width => '595', |
bgcolor => '#ffffff', |
bgcolor => '#ffffff', |
||
debugMode => 0, |
debugMode => 0, |
||
− | submitActionScript => |
+ | submitActionScript => '' |
− | getQE("func").value=getApplet("$appletName").getf_list($x1,"function"); |
||
− | getQE("rlimit").value=getApplet("$appletName").getf_list($x2,"rightlimit"); |
||
− | getQE("llimit").value=getApplet("$appletName").getf_list($x3,"leftlimit"); |
||
− | getQE("limit").value=getApplet("$appletName").getf_list($x4,"limit"); |
||
− | }, |
||
); |
); |
||
################################### |
################################### |
||
− | # Configure applet |
+ | # Configure applet |
− | ################################### |
+ | ################################### |
− | + | ||
− | + | # configuration consists of hintState, question type, and random seed, |
|
− | # |
+ | # and x-coordinates of four points where jumps, discontinuities or cusps |
− | + | # occur. |
|
− | + | $applet->configuration(qq{<xml><plot> |
|
− | + | <xy>$xy</xy> |
|
− | < |
+ | <captiontxt>'Compute the volume of the figure shown.'</captiontxt> |
+ | <shape shapeType='$shapeType' sides='3' ratio='1.5'/> |
||
+ | <xmax>$xmax</xmax> |
||
+ | <theColor>0x0000ff</theColor> |
||
+ | <profile> |
||
+ | <piece func='$func1' cut='8'/> |
||
+ | <piece func='$func2' cut='10'/> |
||
+ | </profile> |
||
+ | </plot></xml>}); |
||
+ | $applet->initialState(qq{<xml><plot> |
||
+ | <xy>$xy</xy> |
||
+ | <captiontxt>'Compute the volume of the figure shown.'</captiontxt> |
||
+ | <shape shapeType='$shapeType' sides='3' ratio='1.5'/> |
||
+ | <xmax>$xmax</xmax> |
||
+ | <theColor>0x0000ff</theColor> |
||
+ | <profile> |
||
+ | <piece func='$func1' cut='8'/> |
||
+ | <piece func='$func2' cut='10'/> |
||
+ | </profile> |
||
+ | </plot></xml>}); |
||
TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( |
TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( |
||
debug=>0, |
debug=>0, |
||
includeAnswerBox=>0, |
includeAnswerBox=>0, |
||
− | # reinitialize_button=>$permissionLevel>=10, |
||
))); |
))); |
||
− | |||
− | |||
− | BEGIN_TEXT |
||
− | <input type="hidden" name="func" id="func" /> |
||
− | <input type="hidden" name="llimit" id="llimit" /> |
||
− | <input type="hidden" name="rlimit" id="rlimit" /> |
||
− | <input type="hidden" name="limit" id="limit" /> |
||
− | END_TEXT |
||
− | |||
− | $answerString1 = $inputs_ref->{func}; |
||
− | my $correctAnswer1 = Compute("$answerString1"); |
||
− | |||
− | $answerString2 = $inputs_ref->{rlimit}; |
||
− | my $correctAnswer2 = Compute("$answerString2"); |
||
− | |||
− | $answerString3 = $inputs_ref->{llimit}; |
||
− | my $correctAnswer3 = Compute("$answerString3"); |
||
− | |||
− | $answerString4 = $inputs_ref->{limit}; |
||
− | my $correctAnswer4 = Compute("$answerString4"); |
||
</pre> |
</pre> |
||
Line 231: | Line 190: | ||
Those portions of the code that begin the line with <code>#</code> are comments and can be omitted or replaced with comments appropriate to your particular problem. |
Those portions of the code that begin the line with <code>#</code> are comments and can be omitted or replaced with comments appropriate to your particular problem. |
||
</p> |
</p> |
||
− | <p>You must include the section that follows <code># Create link to applet</code>. If you are embedding a different applet, from the |
+ | <p>You must include the section that follows <code># Create link to applet</code>. If you are embedding a different applet, from the solidsWW applet, put your applet name in place of 'solidsWW' in the line <code>$appletName = "solidsWW";</code>. Enter the height of the applet in the line <code>height => '550',</code> in place of 550 and the width in the line <code>width => '595',</code> in place of 595. |
</p><br> |
</p><br> |
||
− | <p> The lines <code>$applet->configuration(qq{<xml><hintState>$hintState</hintState><qtype>$qtype</qtype><seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>});</code> and <code>$applet->initialState(qq{<xml><hintState>$hintState</hintState><qtype>$qtype</qtype><seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>});</code> configure the applet. The configuration of the applet is done in xml. The hintState is set to the variable <code>$hintState</code>, the question type is set to <code>$qtype</code> and the problem seed is the WeBWorK environmental variable <code>$problemSeed</code>. The variables <code>$x1</code>, <code>$x2</code>, <code>$x3</code> and <code>$x4</code> are also passed to the applet. |
||
+ | <p> The lines <code>$applet->configuration(qq{<xml><plot></code><code> |
||
− | </p><br> |
||
+ | <xy>$xy</xy></code><code> |
||
− | <p>The code <code>qq{ </code><code> |
||
+ | <captiontxt>'Compute the volume of the figure shown.'</captiontxt></code><code> |
||
− | getQE("func").value=getApplet("$appletName").getf_list($x1,"function");</code><code> |
||
+ | <shape shapeType='$shapeType' sides='3' ratio='1.5'/></code><code> |
||
− | getQE("rlimit").value=getApplet("$appletName").getf_list($x2,"rightlimit");</code><code> |
||
+ | <xmax>$xmax</xmax></code><code> |
||
− | getQE("llimit").value=getApplet("$appletName").getf_list($x3,"leftlimit");</code><code> |
||
+ | <theColor>0x0000ff</theColor></code><code> |
||
− | getQE("limit").value=getApplet("$appletName").getf_list($x4,"limit");</code><code> |
||
+ | <profile></code><code> |
||
− | }</code> |
||
+ | <piece func='$func1' cut='8'/></code><code> |
||
− | is called when the 'Submit Answers' button in the problem is pressed. There is an external interface function designed inside the applet. The function name is 'getf_list'. These lines of code call the function with javascript. <code>getf_list</code>, takes two arguments: the x-coordinate of a point, and a string value. The string may be any of the following four alternatives: "function", "rightlimit", "leftlimit", "limit". <code>getf_list</code> returns either the value of the function at the x-coordinate, or the specified limit. The line <code> |
||
+ | <piece func='$func2' cut='10'/></code><code> |
||
− | getQE("func").value=getApplet("$appletName").getf_list($x1,"function");</code> gets the value of the function at <code>$x1</code> and stores this value in the hidden javascript form field named "func".</p> |
||
+ | </profile></code><code> |
||
− | <p> |
||
+ | </plot></xml>}); |
||
− | The hidden form fields are created in the code block: |
||
+ | </code> and <code>$applet->initialState(qq{<xml><plot></code><code> |
||
− | <code> |
||
+ | <xy>$xy</xy></code><code> |
||
− | BEGIN_TEXT</code><code> |
||
+ | <captiontxt>'Compute the volume of the figure shown.'</captiontxt></code><code> |
||
− | < |
+ | <shape shapeType='$shapeType' sides='3' ratio='1.5'/></code><code> |
− | < |
+ | <xmax>$xmax</xmax></code><code> |
− | + | <theColor>0x0000ff</theColor></code><code> |
|
− | < |
+ | <profile></code><code> |
− | + | <piece func='$func1' cut='8'/></code><code> |
|
− | </code> |
+ | <piece func='$func2' cut='10'/></code><code> |
+ | </profile></code><code> |
||
+ | </plot></xml>});</code> configure the applet. The configuration of the applet is done in xml. The argument of the function is set to the value held in the variable <code>$xy</code>, the captiontxt that appears initially in the information box in the applet is set to <code>Compute the volume of the figure shown.</code>, the shapeType is set to the variable <code>$shapeType</code>, sides and ratio are ignored when the shapeType is set to circle, the color is set in hexadecimal with the xml code <code><theColor>0x0000ff</theColor></code> (this can be omitted and a default color will be used), the piecewise function is defined with the lines <code><piece func='$func1' cut='8'/></code><code><piece func='$func2' cut='10'/></code><code></code> where <code>$func1</code> and <code>$func2</code> define the function and cut specifies the right endpoint for which the given function definition applies. The function definition may have a single piece or more pieces in its definition. |
||
</p><br> |
</p><br> |
||
− | <p> |
||
+ | <p> The code |
||
− | The applet is configured in the code line: |
||
− | <code>$applet->configuration(qq{<xml><hintState>$hintState</hintState><qtype>limits</qtype> |
||
− | <seed>$problemSeed</seed><xlist x1='$x1' x2='$x2' x3='$x3' x4='$x4' /></xml>});</code> and the similar line below it. |
||
− | The variables $hintState, $problemSeed, and $x1, $x2, $x3, and $x4 are defined within WeBWorK and used by the applet to set the problem up. |
||
− | </p><br> |
||
− | <p> |
||
<code>TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( |
<code>TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( |
||
debug=>0, |
debug=>0, |
||
Line 266: | Line 219: | ||
reinitialize_button=>$permissionLevel>=10, |
reinitialize_button=>$permissionLevel>=10, |
||
)));</code> actually embeds the applet in the WeBWorK problem. |
)));</code> actually embeds the applet in the WeBWorK problem. |
||
− | </p><br> |
||
− | <p>When the submit button is pressed, the hidden form fields defined in this block are filled with information from the applet. |
||
</p> |
</p> |
||
− | <p> |
||
+ | Answer submission and checking is done within WeBWorK. The applet is intended to aid with visualization and is not used to evaluate the student submission. |
||
− | The data from the hidden form fields is used in these simple perl subroutines to define the correct answers to the four questions that are part of this WeBWorK problem.</p><br> |
||
+ | </p> |
||
− | <p>The WeBWorK variable $answerString1 is the content of the hidden form field "func". $correctAnswer1 is the solution to the first question. The solutions for the next two questions are defined in a similar way. The final question also has 'DNE' as a possible correct answer for the student to enter. The way that the applet is designed, the left and right limits always exist.</p> |
||
</td> |
</td> |
||
</tr> |
</tr> |
||
Line 280: | Line 230: | ||
$BR |
$BR |
||
− | The graph shown is for the function \(f(x)\). |
||
− | $BR Compute the following quantities: |
||
− | $BR |
||
− | a) |
||
− | \(f($x1)=\) |
||
− | \{ans_rule(35) \} |
||
− | $BR |
||
− | b) |
||
− | \(\lim_{x\to {$x2}^+}f(x)=\) |
||
− | \{ans_rule(35) \} |
||
− | $BR |
||
+ | $BR Find the volume of the solid of revolution formed by rotating the |
||
− | c) |
||
+ | curve \[x=\begin{cases}$a\sin\left(\frac{\pi y}{8}\right)+2&y\le 8\\ |
||
− | \(\lim_{x\to {$x3}^-}f(x)=\) |
||
+ | $b\sin\left(\frac{\pi y}{2}\right)+2&8<y\le 10\end{cases}\] about the \(y\)-axis. |
||
+ | |||
\{ans_rule(35) \} |
\{ans_rule(35) \} |
||
$BR |
$BR |
||
− | d) |
||
− | \(\lim_{x\to {$x4}}f(x)=\) |
||
− | \{ans_rule(35) \} |
||
− | $BR |
||
END_TEXT |
END_TEXT |
||
Context()->normalStrings; |
Context()->normalStrings; |
||
Line 307: | Line 244: | ||
<td style="background-color:#ffcccc;padding:7px;"> |
<td style="background-color:#ffcccc;padding:7px;"> |
||
<p> |
<p> |
||
− | This is the <strong>text section</strong> of the problem. The <code>TEXT(beginproblem());</code> line displays a header for the problem, and the <code>Context()- |
+ | This is the <strong>text section</strong> of the problem. The <code>TEXT(beginproblem());</code> line displays a header for the problem, and the <code>Context()->normalStrings;</code> line sets how formulas are displayed in the text, and we reset this after the text section. Everything between the <code>BEGIN_TEXT</code> and <code>END_TEXT</code> lines (each of which must appear alone on a line) is shown to the student. |
− | </p> |
||
− | <p> |
||
− | Mathematical equations are delimited by <code class="tex2math_ignore">\( \)</code> (for inline equations) or <code class="tex2math_ignore">\[ \]</code> (for displayed equations); in these contexts inserted text is assumed to be TeX code. |
||
− | </p> |
||
− | <p> |
||
− | There are a number of variables that set formatting: <code>$PAR</code> is a paragraph break (like <code>\par</code> in TeX). |
||
− | [[FormatVariableList|This page]] gives a list of variables like this. Finally, <code>\{ \}</code> sets off <em>code that will be executed in the problem text</em>. Here, <code>ans_rule(35)</code> is a function that inserts an answer blank 35 characters wide. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 320: | Line 257: | ||
## answer evaluators |
## answer evaluators |
||
− | ANS( $ |
+ | ANS( $correctAnswer->cmp() ); #checks AnSwEr00003 |
− | ANS( $correctAnswer2->cmp() ); #checks AnSwEr00002 |
||
− | ANS( $correctAnswer3->cmp() ); #checks AnSwEr00003 |
||
− | ANS(num_cmp($correctAnswer4,strings=>['DNE'])); #checks AnSwEr00004 |
||
− | ENDDOCUMENT(); |
+ | ENDDOCUMENT(); |
</pre> |
</pre> |
||
<td style="background-color:#eeccff;padding:7px;"> |
<td style="background-color:#eeccff;padding:7px;"> |
||
<p> |
<p> |
||
− | This is the <strong>answer</strong> section of the problem. The problem answer is set by the <code>ANS( $ |
+ | This is the <strong>answer</strong> section of the problem. The problem answer is set by the <code>ANS( $correctAnswer->cmp() );</code> line. This is a standard WeBWorK answer checker. |
− | </p> |
||
− | <p> |
||
− | The solution is embedded in the applet and becomes available when the due date has passed. |
||
</p> |
</p> |
||
<p> |
<p> |
Revision as of 15:08, 1 August 2011
Flash Applets embedded in WeBWorK questions GraphLimit Example
Sample Problem with solidsWW.swf embedded
This sample problem shows how to use this versatile applet.
A standard WeBWorK PG file with an embedded applet has six sections:
- A tagging and description section, that describes the problem for future users and authors,
- An initialization section, that loads required macros for the problem,
- A problem set-up section that sets variables specific to the problem,
- An Applet link section that inserts the applet and configures it, (this section is not present in WeBWorK problems without an embedded applet)
- A text section, that gives the text that is shown to the student, and
- An answer and solution section, that specifies how the answer(s) to the problem is(are) marked for correctness, and gives a solution that may be shown to the student after the problem set is complete.
The sample file attached to this page shows this; below the file is shown to the left, with a second column on its right that explains the different parts of the problem that are indicated above. A screenshot of the applet embedded in this WeBWorK problem is shown below:
There are other example problems using this applet:
solidsWW Flash Applet Sample Problem 2
solidsWW Flash Applet Sample Problem 3
And other problems using applets:
Derivative Graph Matching Flash Applet Sample Problem
USub Applet Sample Problem
trigwidget Applet Sample Problem
solidsWW Flash Applet Sample Problem 1
GraphLimit Flash Applet Sample Problem 2
Other useful links:
Flash Applets Tutorial
Things to consider in developing WeBWorK problems with embedded Flash applets
PG problem file | Explanation |
---|---|
##DESCRIPTION ## Solids of Revolution ##ENDDESCRIPTION ##KEYWORDS('Solids of Revolution') ## DBsubject('Calculus') ## DBchapter('Applications of Integration') ## DBsection('Solids of Revolution') ## Date('7/31/2011') ## Author('Barbara Margolius') ## Institution('Cleveland State University') ## TitleText1('') ## EditionText1('2011') ## AuthorText1('') ## Section1('') ## Problem1('') ######################################################################## # This work is supported in part by the National Science Foundation # under the grant DUE-0941388. ######################################################################## |
This is the tagging and description section of the problem. Note that any line that begins with a "#" character is a comment for other authors who read the problem, and is not interpreted by WeBWorK. The description is provided to give a quick summary of the problem so that someone reading it later knows what it does without having to read through all of the problem code. All of the tagging information exists to allow the problem to be easily indexed. Because this is a sample problem there isn't a textbook per se, and we've used some default tagging values. There is an on-line list of current chapter and section names and a similar list of keywords. The list of keywords should be comma separated and quoted (e.g., KEYWORDS('calculus','derivatives')). |
DOCUMENT(); loadMacros( "PGstandard.pl", "AppletObjects.pl", "MathObjects.pl", ); |
This is the initialization section of the problem. The first executed line of the problem must be the
The |
TEXT(beginproblem()); $showPartialCorrectAnswers = 1; Context("Numeric"); $a = random(2,10,1); $b = random(2,10,1); $xy = 'y'; $func1 = "$a*sin(pi*y/8)+2"; $func2 = "$b*sin(pi*y/2)+2"; $xmax = max(Compute("$a+2"),Compute("$b+2"),9); $shapeType = 'circle'; $correctAnswer =Compute("64*$a+4*pi*$a^2+32*pi"); |
This is the problem set-up section of the problem.
The solidsWW.swf applet will accept a piecewise defined function either in terms of x or in terms of y. We set |
########################################################################## # How to use the solidWW applet. # Purpose: The purpose of this applet is to help with visualization of # solids # Use of applet: The applet state consists of the following fields: # xmax - the maximum x-value. ymax is 7/5ths of xmax. the minima # are both zero. # captiontxt - the initial text in the info box in the applet # shapeType - circle, ellipse, poly, rectangle # piece: consisting of func and cut # this is a function defined piecewise. # func is a string for the function and # cut is the right endpoint of the interval over which it is defined # there can be any number of pieces # ########################################################################## # What does the applet do? # The applet draws three graphs: # a solid in 3d that the student can rotate with the mouse # the cross-section of the solid (you'll probably want this to be # a circle # the radius of the solid which varies with the height ############################################################################## ################################### # Create link to applet ################################### $appletName = "solidsWW"; $applet = FlashApplet( codebase => findAppletCodebase("$appletName.swf"), appletName => $appletName, appletId => $appletName, setStateAlias => 'setXML', getStateAlias => 'getXML', setConfigAlias => 'setConfig', maxInitializationAttempts => 10, # number of attempts to initialize applet #answerBoxAlias => 'answerBox', height => '550', width => '595', bgcolor => '#ffffff', debugMode => 0, submitActionScript => '' ); ################################### # Configure applet ################################### # configuration consists of hintState, question type, and random seed, # and x-coordinates of four points where jumps, discontinuities or cusps # occur. $applet->configuration(qq{<xml><plot> <xy>$xy</xy> <captiontxt>'Compute the volume of the figure shown.'</captiontxt> <shape shapeType='$shapeType' sides='3' ratio='1.5'/> <xmax>$xmax</xmax> <theColor>0x0000ff</theColor> <profile> <piece func='$func1' cut='8'/> <piece func='$func2' cut='10'/> </profile> </plot></xml>}); $applet->initialState(qq{<xml><plot> <xy>$xy</xy> <captiontxt>'Compute the volume of the figure shown.'</captiontxt> <shape shapeType='$shapeType' sides='3' ratio='1.5'/> <xmax>$xmax</xmax> <theColor>0x0000ff</theColor> <profile> <piece func='$func1' cut='8'/> <piece func='$func2' cut='10'/> </profile> </plot></xml>}); TEXT( MODES(TeX=>'object code', HTML=>$applet->insertAll( debug=>0, includeAnswerBox=>0, ))); |
This is the Applet link section of the problem.
Those portions of the code that begin the line with You must include the section that follows The lines The code
Answer submission and checking is done within WeBWorK. The applet is intended to aid with visualization and is not used to evaluate the student submission. |
BEGIN_TEXT $BR $BR Find the volume of the solid of revolution formed by rotating the curve \[x=\begin{cases}$a\sin\left(\frac{\pi y}{8}\right)+2&y\le 8\\ $b\sin\left(\frac{\pi y}{2}\right)+2&8<y\le 10\end{cases}\] about the \(y\)-axis. \{ans_rule(35) \} $BR END_TEXT Context()->normalStrings; |
This is the text section of the problem. The |
############################################################## # # Answers # ## answer evaluators ANS( $correctAnswer->cmp() ); #checks AnSwEr00003 ENDDOCUMENT(); |
This is the answer section of the problem. The problem answer is set by the
The |