Difference between revisions of "VectorValuedFunctions"
Line 7: | Line 7: | ||
</p> |
</p> |
||
<ul> |
<ul> |
||
− | <li><b>Example 1:</b> |
+ | <li><b>Example 1:</b> A vector parametric line without endpoints where the student chooses the parametrization</li> |
− | <li><b>Example 2:</b> |
+ | <li><b>Example 2:</b> A vector parametric line with endpoints where the student chooses the parametrization and the endpoints</li> |
− | <li><b>Example 3:</b> |
+ | <li><b>Example 3:</b> A vector parametric line with endpoints where the student must enter a particular parametrization and particular endpoints</li> |
</ul> |
</ul> |
||
Line 16: | Line 16: | ||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
− | <em><b>Example 1:</b> |
+ | <em><b>Example 1:</b> A vector parametric line without endpoints where the student chooses the parametrization</em> |
</p> |
</p> |
||
Line 131: | Line 131: | ||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
− | <em><b>Example 2:</b> |
+ | <em><b>Example 2:</b> A vector parametric line with endpoints where the student chooses the parametrization and the endpoints</em> |
</p> |
</p> |
||
Line 290: | Line 290: | ||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> |
||
− | <em><b>Example 3:</b> |
+ | <em><b>Example 3:</b> A vector parametric line with endpoints where the student must enter a particular parametrization and particular endpoints</em> |
</p> |
</p> |
||
Revision as of 20:55, 5 March 2010
Vector Valued Functions as Answers
This shows the PG code to check student answers that are vectors whose components are formulas.
- Example 1: A vector parametric line without endpoints where the student chooses the parametrization
- Example 2: A vector parametric line with endpoints where the student chooses the parametrization and the endpoints
- Example 3: A vector parametric line with endpoints where the student must enter a particular parametrization and particular endpoints
Example 1: A vector parametric line without endpoints where the student chooses the parametrization
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserVectorUtils.pl", "parserParametricLine.pl", "PGcourse.pl", ); TEXT(beginproblem()); |
Initialization:
The first three macros should always be loaded for questions whose answers are vector valued functions.
For the general vector parametric line we need to load |
Context("Vector"); Context()->variables->are(t=>"Real"); $P = non_zero_point3D(); $disp = non_zero_vector3D(); $Q = Point($P + $disp); $speed = random(3,9,1); |
Setup: We randomize two points in three-dimensional space, P and Q, a displacement vector between them, and a speed to travel between them. |
Context()->texStrings; BEGIN_TEXT Find a vector parametric equation for the line through points \( P = $P \) and \( Q = $Q \). $BR \( L(t) = \) \{ ans_rule(40) \} END_TEXT Context()->normalStrings; |
Main Text: The problem text section of the file is as we'd expect. |
$showPartialCorrectAnswers = 1; ANS( ParametricLine("$P + t * $disp")->cmp() ); ENDDOCUMENT(); |
Answer Evaluation:
The answer can be any vector parametric line through the points P and Q, so we use |
Example 2: A vector parametric line with endpoints where the student chooses the parametrization and the endpoints
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserVectorUtils.pl", "parserParametricLine.pl", "parserMultiAnswer.pl", "PGcourse.pl", ); TEXT(beginproblem()); |
Initialization:
The first three macros should always be loaded for questions whose answers are vector valued functions.
We need to load |
Context("Vector"); Context()->variables->are(t=>"Real"); $P = Point(4,0); $Q = Point(0,2); $V = Vector(-4,2); $t = Formula("t"); $line = Vector("$P + $t * $V"); $multians = MultiAnswer( $line, Real("0"), Real("1") )->with( singleResult => 0, checker => sub { my ( $correct, $student, $ansHash ) = @_; my ( $linestu, $astu, $bstu ) = @{$student}; my ( $linecor, $acor, $bcor ) = @{$correct}; if ( (ParametricLine("$line") == $linestu) && ($linestu->eval(t=>"$astu") == $line->eval(t=>"0")) && ($linestu->eval(t=>"$bstu") == $line->eval(t=>"1")) ) { return [1,1,1]; } elsif ( (ParametricLine("$line") == $linestu) && ($linestu->eval(t=>"$astu") == $line->eval(t=>"0")) ) { return [1,1,0]; } elsif ( (ParametricLine("$line") == $linestu) && ($linestu->eval(t=>"$bstu") == $line->eval(t=>"1")) ) { return [1,0,1]; } elsif ( (ParametricLine("$line") == $linestu) ) { return [1,0,0]; } else { return [0,0,0]; } } ); |
Setup: We create a MutiAnswer answer checker that will evaluate the students vector parametric equation at the endpoints provided by the student. |
Context()->texStrings; BEGIN_TEXT Find a vector parametric equation for the line segment between the points \(P = $P\) and \(Q = $Q\). $BR \( \vec{r}(t) = \) \{ $multians->ans_rule(40 )\} for \{ $multians->ans_rule(5) \} \( \leq t \leq \) \{ $multians->ans_rule(5) \} END_TEXT Context()->normalStrings; |
Main Text: The problem text section of the file is as we'd expect. |
$showPartialCorrectAnswers = 1; ANS( $multians->cmp() ); ENDDOCUMENT(); |
Answer Evaluation:
This part is easy since we defined |
Example 3: A vector parametric line with endpoints where the student must enter a particular parametrization and particular endpoints
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserVectorUtils.pl", "answerCustom.pl", "PGcourse.pl", ); TEXT(beginproblem()); |
Initialization:
The first three macros should always be loaded for questions whose answers are vector valued functions.
For the specific vector parametric line (part (b) in the question below) we need to load |
Context("Vector"); Context()->variables->are(t=>"Real"); $P = non_zero_point3D(); $disp = non_zero_vector3D(); $Q = Point($P + $disp); $speed = random(3,9,1); |
Setup: We randomize two points in three-dimensional space, P and Q, a displacement vector between them, and a speed to travel between them. |
Context()->texStrings; BEGIN_TEXT A particle starts at the point \( P = $P \) when \( t = 0 \) and moves along a straight line toward \( Q = $Q \) at a speed of \( $speed \) cm/sec. Assume that x, y, and z are measured in cm. Do not enter units with your answers. $BR $BR Find the vector parametric equation for the position of the object. $BR \( \vec{r}(t) = \) \{ans_rule(40)\} END_TEXT Context()->normalStrings; |
Main Text: The problem text section of the file is as we'd expect. |
$showPartialCorrectAnswers = 1; # for checking a particular vector parametric line sub mycheck { my ($correct, $student, $ansHash) = @_; if ( ($correct . i == $student . i) && ($correct . j == $student . j) && ($correct . k == $student . k) ) { return 1; } else { return 0; } } $T = Formula("$speed * t / norm($disp)"); $r = $P + $T * $disp; ANS( custom_cmp( $r, ~~&mycheck, showCoordinateHints=>1 ) ); ENDDOCUMENT(); |
Answer Evaluation:
There is only one vector parametric equation that describes the position of the object subject to the given conditions, so we want only one answer to be marked correct. We create a custom answer checker For more on custom answer evaluators, see CustomAnswerCheckers and answerCustom.pl.html |
- POD documentation: parserParametricLine.pl.html
- PG macro: parserParametricLine.pl
- POD documentation: answerCustom.pl.html
- PG macro: answerCustom.pl