Difference between revisions of "IndefiniteIntegrals1"

From WeBWorK_wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<h2>Indefinite Integrals and General Antiderivatives</h2>
 
<h2>Indefinite Integrals and General Antiderivatives</h2>
   
  +
[[File:IndefiniteIntegrals1.png|300px|thumb|right|Click to enlarge]]
 
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;">
 
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;">
 
This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
 
This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
<ul>
 
<li>Download file: [[File:IndefiniteIntegrals1.txt]] (change the file extension from txt to pg when you save it)</li>
 
<li>File location in NPL: <code>NationalProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg</code></li>
 
</ul>
 
 
</p>
 
</p>
  +
* Download file: [[File:IndefiniteIntegrals1.txt]] (change the file extension from txt to pg when you save it)
  +
* File location in NPL: <code>FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg</code>
   
  +
  +
<br clear="all" />
 
<p style="text-align:center;">
 
<p style="text-align:center;">
 
[[SubjectAreaTemplates|Templates by Subject Area]]
 
[[SubjectAreaTemplates|Templates by Subject Area]]

Revision as of 16:27, 2 December 2010

Indefinite Integrals and General Antiderivatives

Click to enlarge

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.

  • Download file: File:IndefiniteIntegrals1.txt (change the file extension from txt to pg when you save it)
  • File location in NPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg



Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();

loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"AnswerFormatHelp.pl",
"parserFormulaUpToConstant.pl",
);

TEXT(beginproblem());

Initialization:

Context("Numeric");

$specific = Formula("e^x");

$general = FormulaUpToConstant("e^x");

Setup: Examples of specific and general antiderivatives:

  • Specific antiderivatives: e^x, e^x + pi
  • General antiderivatives: e^x + C, e^x + C - 3, e^x + K

The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the FormulaUpToConstant() constructor provided by parserFormulaUpToConstant.pl.

Context()->texStrings;
BEGIN_TEXT
Enter a specific antiderivative for \( e^x \): 
\{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
$BR
$BR
Enter the most general antiderivative for \( e^x \): 
\{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
END_TEXT
Context()->normalStrings;

Main Text:

$showPartialCorrectAnswers = 1;

ANS( $specific->cmp(upToConstant=>1) );

ANS( $general->cmp() );

Answer Evaluation: For the specific antiderivative, we must use upToConstant=>1, otherwise the only answer that will be marked correct will be e^x.

Context()->texStrings;
BEGIN_SOLUTION
${PAR}SOLUTION:${PAR}
Solution explanation goes here.
END_SOLUTION
Context()->normalStrings;

COMMENT('MathObject version.');

ENDDOCUMENT();

Solution:

Templates by Subject Area