Difference between revisions of "IndefiniteIntegrals1"

From WeBWorK_wiki
Jump to navigation Jump to search
(PGML example link)
(Removes the AnswerFormatHelp macro and some other cleanup.)
Line 16: Line 16:
   
 
<tr valign="top">
 
<tr valign="top">
<th> PG problem file </th>
+
<th style="width: 40%"> PG problem file </th>
 
<th> Explanation </th>
 
<th> Explanation </th>
 
</tr>
 
</tr>
Line 43: Line 43:
   
 
loadMacros(
 
loadMacros(
"PGstandard.pl",
+
'PGstandard.pl',
"MathObjects.pl",
+
'MathObjects.pl',
"AnswerFormatHelp.pl",
+
'parserFormulaUpToConstant.pl',
"parserFormulaUpToConstant.pl",
+
'PGML.pl',
  +
'PGcourse.pl'
 
);
 
);
   
Line 92: Line 92:
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML
BEGIN_TEXT
 
  +
+ Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)}
Enter a specific antiderivative for \( e^x \):
 
  +
\{ ans_rule(20) \}
 
  +
+ Enter the most general antiderivative for [` e^x `]: [____________]{$general}
\{ AnswerFormatHelp("formulas") \}
 
  +
$BR
 
  +
[@ helpLink('formulas') @]*
$BR
 
  +
END_PGML
Enter the most general antiderivative for \( e^x \):
 
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("formulas") \}
 
END_TEXT
 
Context()->normalStrings;
 
 
</pre>
 
</pre>
 
<td style="background-color:#ffcccc;padding:7px;">
 
<td style="background-color:#ffcccc;padding:7px;">
 
<p>
 
<p>
 
<b>Main Text:</b>
 
<b>Main Text:</b>
</p>
 
</td>
 
</tr>
 
 
<!-- Answer evaluation section -->
 
 
<tr valign="top">
 
<td style="background-color:#eeddff;border:black 1px dashed;">
 
<pre>
 
$showPartialCorrectAnswers = 1;
 
 
ANS( $specific->cmp(upToConstant=>1) );
 
 
ANS( $general->cmp() );
 
</pre>
 
<td style="background-color:#eeccff;padding:7px;">
 
<p>
 
<b>Answer Evaluation:</b>
 
For the specific antiderivative, we must use <code>upToConstant=>1</code>, otherwise the only answer that will be marked correct will be <code>e^x</code>.
 
 
</p>
 
</p>
 
</td>
 
</td>
Line 136: Line 112:
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML_SOLUTION
BEGIN_SOLUTION
 
 
Solution explanation goes here.
 
Solution explanation goes here.
END_SOLUTION
 
  +
END_PGML_SOLUTION
Context()->normalStrings;
 
 
COMMENT('MathObject version.');
 
   
 
ENDDOCUMENT();
 
ENDDOCUMENT();

Revision as of 12:19, 10 March 2023

Indefinite Integrals and General Antiderivatives

Click to enlarge

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.


Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();

loadMacros(
  'PGstandard.pl',
  'MathObjects.pl',
  'parserFormulaUpToConstant.pl',
  'PGML.pl',
  'PGcourse.pl'
);

TEXT(beginproblem());

Initialization:

Context("Numeric");

$specific = Formula("e^x");

$general = FormulaUpToConstant("e^x");

Setup: Examples of specific and general antiderivatives:

  • Specific antiderivatives: e^x, e^x + pi
  • General antiderivatives: e^x + C, e^x + C - 3, e^x + K

The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the FormulaUpToConstant() constructor provided by parserFormulaUpToConstant.pl.

BEGIN_PGML
+ Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)}

+ Enter the most general antiderivative for [` e^x `]: [____________]{$general}

[@ helpLink('formulas') @]*
END_PGML

Main Text:

BEGIN_PGML_SOLUTION
Solution explanation goes here.
END_PGML_SOLUTION

ENDDOCUMENT();

Solution:

Templates by Subject Area