Difference between revisions of "DifferentiateFunction1"
Paultpearson (talk | contribs) (Add link to PGML version in OPL) |
(Switch to PGML.) |
||
Line 5: | Line 5: | ||
This PG code shows how to create a function using MathObjects, differentiate it, and evaluate it. |
This PG code shows how to create a function using MathObjects, differentiate it, and evaluate it. |
||
</p> |
</p> |
||
− | * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg] |
+ | <!--* File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg] --> |
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg] |
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg] |
||
Line 16: | Line 16: | ||
<tr valign="top"> |
<tr valign="top"> |
||
− | <th> PG problem file </th> |
+ | <th style="width: 50%"> PG problem file </th> |
<th> Explanation </th> |
<th> Explanation </th> |
||
</tr> |
</tr> |
||
Line 43: | Line 43: | ||
loadMacros( |
loadMacros( |
||
− | + | 'PGstandard.pl', |
|
− | + | 'MathObjects.pl', |
|
− | + | 'PGML.pl', |
|
− | + | 'PGcourse.pl' |
|
); |
); |
||
Line 54: | Line 54: | ||
<td style="background-color:#ddffdd;padding:7px;"> |
<td style="background-color:#ddffdd;padding:7px;"> |
||
<p> |
<p> |
||
− | <b>Initialization:</b> |
||
− | We load <code>unionLists.pl</code> to create an enumerated list in the Main Text section. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 66: | Line 64: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context( |
+ | Context('Numeric')->variables->add(k=>'Real'); |
Context()->flags->set( |
Context()->flags->set( |
||
reduceConstants=>0, # no decimals |
reduceConstants=>0, # no decimals |
||
Line 76: | Line 74: | ||
$k = random(3,5,1); |
$k = random(3,5,1); |
||
− | $f = Formula( |
+ | $f = Formula('k x^2'); |
$fx = $f->D('x'); |
$fx = $f->D('x'); |
||
− | + | $ans1 = $fx; |
|
− | + | $ans2 = $fx->substitute(k=>$k); |
|
− | $ |
+ | $ans3 = $fx->substitute(x=>$a*pi,k=>$k); |
− | |||
− | $answer[1] = $fx->substitute(k=>$k); |
||
− | |||
− | $answer[2] = $fx->substitute(x=>$a*pi,k=>$k); |
||
</pre> |
</pre> |
||
</td> |
</td> |
||
Line 93: | Line 91: | ||
* <code>eval()</code> returns a Real (a number) |
* <code>eval()</code> returns a Real (a number) |
||
* <code>substitute()</code> returns a Formula |
* <code>substitute()</code> returns a Formula |
||
− | Since plugging a particular number <code>$k</code> into the Formula <code>$f</code> returns a Formula <code>$k x</code>, if we had used the eval method <code>$ |
+ | Since plugging a particular number <code>$k</code> into the Formula <code>$f</code> returns a Formula <code>$k x</code>, if we had used the eval method <code>$ans2 = $fx->eval(k=>$k);</code> instead of the substitute method, we would get errors because <code>$k x</code> is a Formula, not a Real. Note: You cannot use eval or substitute to perform function composition, i.e., you can only plug in numbers, not formulas. |
</p> |
</p> |
||
<p> |
<p> |
||
− | When the answer is a constant, we can use either the eval method, in which case the answer would be a Real, or the substitute method, in which case the answer would be a constant Formula. If you use the eval method, <code>$ |
+ | When the answer is a constant, we can use either the eval method, in which case the answer would be a Real, or the substitute method, in which case the answer would be a constant Formula. If you use the eval method, <code>$ans3 = $fx->eval(x=>$a*pi,k=>$k);</code> the answer will be a Real and will display as a single number in decimal format. If you use the substitute method instead, you have more control over how the answer will be displayed. In particular, the context flag |
<code>reduceConstants</code> controls whether the answer will be reduced to a single number in decimal format, the flag <code>reduceConstantFunctions</code> controls whether or not expressions such as <code>4+5*2</code> are reduced to <code>14</code>, and setting the context flag <code>formatStudentAnswer=>'parsed'</code> will prevent the student's answer from being reduced to a single number in decimal format and will also display <code>pi</code> instead of <code>3.14159...</code> |
<code>reduceConstants</code> controls whether the answer will be reduced to a single number in decimal format, the flag <code>reduceConstantFunctions</code> controls whether or not expressions such as <code>4+5*2</code> are reduced to <code>14</code>, and setting the context flag <code>formatStudentAnswer=>'parsed'</code> will prevent the student's answer from being reduced to a single number in decimal format and will also display <code>pi</code> instead of <code>3.14159...</code> |
||
</p> |
</p> |
||
Line 110: | Line 108: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML |
||
− | BEGIN_TEXT |
||
+ | Suppose [` f(x) = [$f] `] where [` k `] is a constant. |
||
− | Suppose \( f(x) = $f \) where \( k \) is a |
||
− | constant. |
||
− | \{ BeginList("OL",type=>"a") \} |
||
− | $ITEM \( f'(x) = \) |
||
+ | a. [` f ' (x) = `] [_______________]{$ans1} |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("formulas") \} |
||
− | $ITEMSEP |
||
+ | b. If [` k = [$k] `] then [` f ' (x) = `] [_______________]{$ans2} |
||
− | $ITEM If \( k = $k \) then \( f'(x) = \) |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("formulas") \} |
||
− | $ITEMSEP |
||
+ | c. If [` k = [$k] `] then [` f ' ([$a]\pi) = `] [_______________]{$ans3} |
||
− | $ITEM If \( k = $k \) then \( f'($a\pi) = \) |
||
− | \{ ans_rule(20) \} |
||
− | \{ AnswerFormatHelp("formulas") \} |
||
− | \{ EndList("OL") \} |
||
+ | [@ helpLink('formulas') @]* |
||
− | END_TEXT |
||
+ | END_PGML |
||
− | Context()->normalStrings; |
||
</pre> |
</pre> |
||
<td style="background-color:#ffcccc;padding:7px;"> |
<td style="background-color:#ffcccc;padding:7px;"> |
||
<p> |
<p> |
||
<b>Main Text:</b> |
<b>Main Text:</b> |
||
− | We use an ordered list to display the three parts to this question. The <code>$ITEMSEP</code> command puts extra separation between items. This list is provided by the macro <code>unionLists.pl</code>. |
||
− | </p> |
||
− | </td> |
||
− | </tr> |
||
− | |||
− | <!-- Answer evaluation section --> |
||
− | |||
− | <tr valign="top"> |
||
− | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
− | <pre> |
||
− | $showPartialCorrectAnswers = 1; |
||
− | |||
− | foreach my $i (0..2) { |
||
− | ANS( $answer[$i]->cmp() ); |
||
− | } |
||
− | </pre> |
||
− | <td style="background-color:#eeccff;padding:7px;"> |
||
− | <p> |
||
− | <b>Answer Evaluation:</b> |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 165: | Line 132: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> |
<td style="background-color:#ddddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML_SOLUTION |
||
− | BEGIN_SOLUTION |
||
Solution explanation goes here. |
Solution explanation goes here. |
||
− | END_SOLUTION |
||
+ | END_PGML_SOLUTION |
||
− | Context()->normalStrings; |
||
− | COMMENT( |
+ | COMMENT('Uses PGML.'); |
ENDDOCUMENT(); |
ENDDOCUMENT(); |
Revision as of 07:02, 11 March 2023
Differentiating and Evaluating a Function
This PG code shows how to create a function using MathObjects, differentiate it, and evaluate it.
- PGML location in OPL: FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( 'PGstandard.pl', 'MathObjects.pl', 'PGML.pl', 'PGcourse.pl' ); TEXT(beginproblem()); |
|
Context('Numeric')->variables->add(k=>'Real'); Context()->flags->set( reduceConstants=>0, # no decimals reduceConstantFunctions=>1, # combine 4+5*2? formatStudentAnswer=>'parsed', # no decimals ); $a = random(6,9,1); $k = random(3,5,1); $f = Formula('k x^2'); $fx = $f->D('x'); $ans1 = $fx; $ans2 = $fx->substitute(k=>$k); $ans3 = $fx->substitute(x=>$a*pi,k=>$k); |
Setup:
The partial differentiation operator is
The main difference between
$k into the Formula $f returns a Formula $k x , if we had used the eval method $ans2 = $fx->eval(k=>$k); instead of the substitute method, we would get errors because $k x is a Formula, not a Real. Note: You cannot use eval or substitute to perform function composition, i.e., you can only plug in numbers, not formulas.
When the answer is a constant, we can use either the eval method, in which case the answer would be a Real, or the substitute method, in which case the answer would be a constant Formula. If you use the eval method, For more details, see eval versus substitute, formatting correct answers, and constants in problems. |
BEGIN_PGML Suppose [` f(x) = [$f] `] where [` k `] is a constant. a. [` f ' (x) = `] [_______________]{$ans1} b. If [` k = [$k] `] then [` f ' (x) = `] [_______________]{$ans2} c. If [` k = [$k] `] then [` f ' ([$a]\pi) = `] [_______________]{$ans3} [@ helpLink('formulas') @]* END_PGML |
Main Text: |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION COMMENT('Uses PGML.'); ENDDOCUMENT(); |
Solution: |