Difference between revisions of "DifferentiateFunction1"

From WeBWorK_wiki
Jump to navigation Jump to search
(Add link to PGML version in OPL)
(Switch to PGML.)
Line 5: Line 5:
 
This PG code shows how to create a function using MathObjects, differentiate it, and evaluate it.
 
This PG code shows how to create a function using MathObjects, differentiate it, and evaluate it.
 
</p>
 
</p>
* File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg]
+
<!--* File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1.pg] -->
 
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg]
 
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg FortLewis/Authoring/Templates/DiffCalc/DifferentiateFunction1_PGML.pg]
   
Line 16: Line 16:
   
 
<tr valign="top">
 
<tr valign="top">
<th> PG problem file </th>
+
<th style="width: 50%"> PG problem file </th>
 
<th> Explanation </th>
 
<th> Explanation </th>
 
</tr>
 
</tr>
Line 43: Line 43:
   
 
loadMacros(
 
loadMacros(
"PGstandard.pl",
+
'PGstandard.pl',
"MathObjects.pl",
+
'MathObjects.pl',
"AnswerFormatHelp.pl",
+
'PGML.pl',
"unionLists.pl",
+
'PGcourse.pl'
 
);
 
);
   
Line 54: Line 54:
 
<td style="background-color:#ddffdd;padding:7px;">
 
<td style="background-color:#ddffdd;padding:7px;">
 
<p>
 
<p>
<b>Initialization:</b>
 
We load <code>unionLists.pl</code> to create an enumerated list in the Main Text section.
 
 
</p>
 
</p>
 
</td>
 
</td>
Line 66: Line 64:
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context("Numeric")->variables->add(k=>"Real");
+
Context('Numeric')->variables->add(k=>'Real');
 
Context()->flags->set(
 
Context()->flags->set(
 
reduceConstants=>0, # no decimals
 
reduceConstants=>0, # no decimals
Line 76: Line 74:
 
$k = random(3,5,1);
 
$k = random(3,5,1);
   
$f = Formula("k x^2");
+
$f = Formula('k x^2');
 
$fx = $f->D('x');
 
$fx = $f->D('x');
   
@answer = ();
+
$ans1 = $fx;
+
$ans2 = $fx->substitute(k=>$k);
$answer[0] = $fx;
+
$ans3 = $fx->substitute(x=>$a*pi,k=>$k);
 
$answer[1] = $fx->substitute(k=>$k);
 
 
$answer[2] = $fx->substitute(x=>$a*pi,k=>$k);
 
 
</pre>
 
</pre>
 
</td>
 
</td>
Line 93: Line 91:
 
* <code>eval()</code> returns a Real (a number)
 
* <code>eval()</code> returns a Real (a number)
 
* <code>substitute()</code> returns a Formula
 
* <code>substitute()</code> returns a Formula
Since plugging a particular number <code>$k</code> into the Formula <code>$f</code> returns a Formula <code>$k x</code>, if we had used the eval method <code>$answer[1] = $fx->eval(k=>$k);</code> instead of the substitute method, we would get errors because <code>$k x</code> is a Formula, not a Real. Note: You cannot use eval or substitute to perform function composition, i.e., you can only plug in numbers, not formulas.
+
Since plugging a particular number <code>$k</code> into the Formula <code>$f</code> returns a Formula <code>$k x</code>, if we had used the eval method <code>$ans2 = $fx->eval(k=>$k);</code> instead of the substitute method, we would get errors because <code>$k x</code> is a Formula, not a Real. Note: You cannot use eval or substitute to perform function composition, i.e., you can only plug in numbers, not formulas.
 
</p>
 
</p>
 
<p>
 
<p>
When the answer is a constant, we can use either the eval method, in which case the answer would be a Real, or the substitute method, in which case the answer would be a constant Formula. If you use the eval method, <code>$answer[2] = $fx->eval(x=>$a*pi,k=>$k);</code> the answer will be a Real and will display as a single number in decimal format. If you use the substitute method instead, you have more control over how the answer will be displayed. In particular, the context flag
+
When the answer is a constant, we can use either the eval method, in which case the answer would be a Real, or the substitute method, in which case the answer would be a constant Formula. If you use the eval method, <code>$ans3 = $fx->eval(x=>$a*pi,k=>$k);</code> the answer will be a Real and will display as a single number in decimal format. If you use the substitute method instead, you have more control over how the answer will be displayed. In particular, the context flag
 
<code>reduceConstants</code> controls whether the answer will be reduced to a single number in decimal format, the flag <code>reduceConstantFunctions</code> controls whether or not expressions such as <code>4+5*2</code> are reduced to <code>14</code>, and setting the context flag <code>formatStudentAnswer=>'parsed'</code> will prevent the student's answer from being reduced to a single number in decimal format and will also display <code>pi</code> instead of <code>3.14159...</code>
 
<code>reduceConstants</code> controls whether the answer will be reduced to a single number in decimal format, the flag <code>reduceConstantFunctions</code> controls whether or not expressions such as <code>4+5*2</code> are reduced to <code>14</code>, and setting the context flag <code>formatStudentAnswer=>'parsed'</code> will prevent the student's answer from being reduced to a single number in decimal format and will also display <code>pi</code> instead of <code>3.14159...</code>
 
</p>
 
</p>
Line 110: Line 108:
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML
BEGIN_TEXT
 
  +
Suppose [` f(x) = [$f] `] where [` k `] is a constant.
Suppose \( f(x) = $f \) where \( k \) is a
 
constant.
 
\{ BeginList("OL",type=>"a") \}
 
   
$ITEM \( f'(x) = \)
 
  +
a. [` f ' (x) = `] [_______________]{$ans1}
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("formulas") \}
 
   
$ITEMSEP
 
  +
b. If [` k = [$k] `] then [` f ' (x) = `] [_______________]{$ans2}
$ITEM If \( k = $k \) then \( f'(x) = \)
 
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("formulas") \}
 
   
$ITEMSEP
 
  +
c. If [` k = [$k] `] then [` f ' ([$a]\pi) = `] [_______________]{$ans3}
$ITEM If \( k = $k \) then \( f'($a\pi) = \)
 
\{ ans_rule(20) \}
 
\{ AnswerFormatHelp("formulas") \}
 
   
\{ EndList("OL") \}
 
  +
[@ helpLink('formulas') @]*
END_TEXT
 
  +
END_PGML
Context()->normalStrings;
 
 
</pre>
 
</pre>
 
<td style="background-color:#ffcccc;padding:7px;">
 
<td style="background-color:#ffcccc;padding:7px;">
 
<p>
 
<p>
 
<b>Main Text:</b>
 
<b>Main Text:</b>
We use an ordered list to display the three parts to this question. The <code>$ITEMSEP</code> command puts extra separation between items. This list is provided by the macro <code>unionLists.pl</code>.
 
</p>
 
</td>
 
</tr>
 
 
<!-- Answer evaluation section -->
 
 
<tr valign="top">
 
<td style="background-color:#eeddff;border:black 1px dashed;">
 
<pre>
 
$showPartialCorrectAnswers = 1;
 
 
foreach my $i (0..2) {
 
ANS( $answer[$i]->cmp() );
 
}
 
</pre>
 
<td style="background-color:#eeccff;padding:7px;">
 
<p>
 
<b>Answer Evaluation:</b>
 
 
</p>
 
</p>
 
</td>
 
</td>
Line 165: Line 132:
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML_SOLUTION
BEGIN_SOLUTION
 
 
Solution explanation goes here.
 
Solution explanation goes here.
END_SOLUTION
 
  +
END_PGML_SOLUTION
Context()->normalStrings;
 
   
COMMENT("MathObject version.");
+
COMMENT('Uses PGML.');
   
 
ENDDOCUMENT();
 
ENDDOCUMENT();

Revision as of 07:02, 11 March 2023

Differentiating and Evaluating a Function

Click to enlarge

This PG code shows how to create a function using MathObjects, differentiate it, and evaluate it.


Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT(); 

loadMacros(
  'PGstandard.pl',
  'MathObjects.pl',
  'PGML.pl',
  'PGcourse.pl'
);

TEXT(beginproblem());

Context('Numeric')->variables->add(k=>'Real');
Context()->flags->set(
  reduceConstants=>0, # no decimals
  reduceConstantFunctions=>1, # combine 4+5*2?
  formatStudentAnswer=>'parsed', # no decimals
);

$a = random(6,9,1);
$k = random(3,5,1);

$f = Formula('k x^2');
$fx = $f->D('x');

$ans1 = $fx;
$ans2 = $fx->substitute(k=>$k); 
$ans3 = $fx->substitute(x=>$a*pi,k=>$k);

Setup: The partial differentiation operator is ->D('x').

The main difference between eval() and substitute() is

  • eval() returns a Real (a number)
  • substitute() returns a Formula
Since plugging a particular number $k into the Formula $f returns a Formula $k x, if we had used the eval method $ans2 = $fx->eval(k=>$k); instead of the substitute method, we would get errors because $k x is a Formula, not a Real. Note: You cannot use eval or substitute to perform function composition, i.e., you can only plug in numbers, not formulas.

When the answer is a constant, we can use either the eval method, in which case the answer would be a Real, or the substitute method, in which case the answer would be a constant Formula. If you use the eval method, $ans3 = $fx->eval(x=>$a*pi,k=>$k); the answer will be a Real and will display as a single number in decimal format. If you use the substitute method instead, you have more control over how the answer will be displayed. In particular, the context flag reduceConstants controls whether the answer will be reduced to a single number in decimal format, the flag reduceConstantFunctions controls whether or not expressions such as 4+5*2 are reduced to 14, and setting the context flag formatStudentAnswer=>'parsed' will prevent the student's answer from being reduced to a single number in decimal format and will also display pi instead of 3.14159...

For more details, see eval versus substitute, formatting correct answers, and constants in problems.

BEGIN_PGML
Suppose [` f(x) = [$f] `] where [` k `] is a constant.

a. [` f ' (x) = `] [_______________]{$ans1}

b. If [` k = [$k] `] then [` f ' (x) = `] [_______________]{$ans2}

c. If [` k = [$k] `] then [` f ' ([$a]\pi) = `] [_______________]{$ans3}

[@ helpLink('formulas') @]*
END_PGML

Main Text:

BEGIN_PGML_SOLUTION
Solution explanation goes here.
END_PGML_SOLUTION

COMMENT('Uses PGML.');

ENDDOCUMENT();

Solution:

Templates by Subject Area